
FEATURE ARTICLE

Dynamics of Nonadiabatic Chemical Reactions

Hiroki Nakamura
Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan

ReceiVed: June 12, 2006; In Final Form: July 14, 2006

New methods are proposed to treat nonadiabatic chemical dynamics in realistic large molecular systems by
using the Zhu-Nakamura (ZN) theory of curve-crossing problems. They include the incorporation of the ZN
formulas into the Herman-Kluk type semiclassical wave packet propagation method and the trajectory surface
hopping (TSH) method, formulation of the nonadiabatic transition state theory, and its application to the
electron transfer problem. Because the nonadiabtic coupling is a vector in multidimensional space, the one-
dimensional ZN theory works all right. Even the classically forbidden transitions can be correctly treated by
the ZN formulas. In the case of electron transfer, a new formula that can improve the celebrated Marcus
theory in the case of normal regime is obtained so that it can work nicely in the intermediate and strong
electronic coupling regimes. All these formulations mentioned above are demonstrated to work well in
comparison with the exact quantum mechanical numerical solutions and are expected to be applicable to
large systems that cannot be treated quantum mechanically numerically exactly. To take into account another
quantum mechanical effect, namely, the tunneling effect, an efficient method to detect caustics from which
tunneling trajectories emanate is proposed. All the works reported here are the results of recent activities
carried out in the author’s research group. Finally, the whole set of ZN formulas is presented in Appendix.

I. Introduction

Without doubt nonadiabatic dynamics play crucial roles in
physics, chemistry and biology, even if this fact is not explicitly
well recognized in some occasions.1-8 A nonadiabatic transition
presents a very basic mechanism not only to comprehend various
dynamic processes occurring in nature but also to manifest new
molecular functions in nanospace and to control dynamic
processes by applying an external field. Theory of nonadiabatic
transition can play important roles to accomplish these studies.
A complete set of analytical formulas for the curve-crossing
problem derived by Zhu and Nakamura (Zhu-Nakamura (ZN)
theory)1,2,9-13 is actually useful for these studies.

For the creation of new molecular functions, for instance,
the intriguing phenomenon of complete reflection found in the
nonadiabatic tunneling type of transition in which the two
diabatic potential curves cross with opposite signs of slopes may
play important roles.14,15 As for the control of chemical
dynamics, nonadiabatic transitions created by an external field
like laser can be manipulated by appropriately designing the
field parameters so that the desirable products can be efficiently
produced.16-22 These subjects, i.e., manifestation of molecular
functions and control of chemical dynamics, are not discussed
in this Feature Article. This Feature Article describes a summary
of the recent activities done in the author’s research group
concerning the first subject mentioned above, namely, the
comprehension of nonadiabatic chemical reaction dynamics.

The ZN theory can be incorporated into various simulation
methods to treat realistic molecular systems. Because the
nonadiabatic coupling is a vector and thus we can always
determine the relevant one-dimensional direction of the transi-

tion in multidimensional space, the one-dimensional ZN theory
can be usefully utilized. Besides, the comprehension of reaction
mechanisms can be enhanced by using the theory, because the
formulas are given in simple analytical expressions. Considering
the nonfeasibility of full quantum mechanical numerical simula-
tions of realistic large systems, it would be appropriate to
incorporate the theory into some kind of semiclassical methods.
The promising semiclassical methods are (i) the initial value
representation method23 and (ii) the frozen Gaussian propagation
method.24-26 These methods have been developed for the
adiabatic processes, namely, for the dynamics on a single
adiabatic potential energy surface. Incorporation of the ZN theoy
can extend the methods so as to treat electronically nonadiabatic
dynamics beyond the perturbative treatment.25,27A much simpler
simulation method is the trajectory surface hopping (TSH).28,29

This is a classical trajectory method with electronic transitions
between the two potential energy surfaces treated by the
Landau-Zener formula or by solving the time-dependent
coupled equations. After these original works many modifica-
tions and improvements have been introduced30,31and the widely
spread applications have been made because of the simplicity.32-34

However, some crucial problems have been left unsolved such
as how to deal with the classically forbidden nonadiabatic
transitions and how to define classical trajectories uniquely.
These defects can be removed by using the ZN theory in the
adiabaticstate representation.

The ZN formulas can also be utilized to formulate a theory
for the direct evaluation of the thermal rate constant of
electronically nonadiabatic chemical reactions based on the idea
of transition state theory.35 This formulation can be further
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utilized to formulate a theory of electron transfer and an
improvement of the celebrated Marcus formula can be done.36

Needless to say, multidimensional tunneling is another
important quantum mechanical effect that should also be
incorporated into simulations such as those mentioned above.
To do that, the so-called caustics, which are nothing but turning
points in the case of an ordinary one-dimensional system and
from which tunneling trajectories emanate, should be properly
detected along classical trajectories. An efficient method to do
this has recently been devised by Oloyede et al.37 This can be
done by solving the first-order Riccati type time-dependent
differential equation along trajectories and the method can be
incorporated into the above-mentioned simulation methods.

This paper is organized as follows. Incorporation of the ZN
formulas into the semiclassical frozen Gaussian wave packet
propagation method and the TSH method will be described in
sections II and III, respectively. Some numerical examples will
be presented. The theory of nonadiabatic thermal rate constant
and its application to electron transfer will be discussed in
section IV. Finally, the detection of caustics will be explained
in section V together with some numerical demonstrations.
Section VI concludes the paper.

II. Semiclassical Herman-Kluk Type Frozen Gaussian
Wave Packet Propagation Method

As mentioned above, full quantum mechanical treatments are
limited only to low dimensional systems and it is desirable to
develop effective semiclassical theories with nonadiabatic
transitions incorporated. In the adiabatic state representation a
whole chemical process can be divided into the following two
steps (see Figure 1): (i) motion on a single adiabatic potential
energy surface up to the region of nonadiabatic transition and
(ii) nonadiabatic transition at the potential surface crossing. As
mentioned above, there are two types of semiclassical path
integral methods for the propagation on a single potential energy
surface. One is the initial value representation theory with use
of classical trajectories devised by Miller and others.23 In this
case the nonadiabatic transition amplitude of the ZN theory can
be directly incorporated into the framework. The other is the
frozen Gaussian wave packet propagation method.24-26 The
Herman-Kluk propagator combined with the cellularization
procedure works well, giving good agreement with full quantum
calculations.25,26 The semiclassical approach explained in this
section makes use of the advantages of the Herman-Kluk theory

for single surface propagation25 and the ZN theory for non-
adiabatic transition. The nonadiabatic transition amplitude of
the ZN theory properly provides also the so-called dynamical
phases induced by the nonadiabatic transition and can be
incorporated into each frozen Gaussian wave packet by expand-
ing the latter in terms of energy normalized eigenstates.

Here only the outline of the formulation is described so that
the reader can grasp the essential ideas of the method. The
details of the formulation can be found in the original papers.27,38

The total wave function at timet in the Herman-Kluk approach
is expressed as

whereψ(r0,t)0) andψ(r ,t) are the wave functions at time zero
and t, respectively,N is the dimensionality of configuration
space,Sq0,p0,t is the classical action along the trajectory from
(q0,p0,t)0) to (qt,pt,t), andCq0,p0,t is the Herman-Kluk preex-
ponential factor along the trajectory.25 The frozen Gaussian wave
packes are defined as

whereγ is a constant parameter common for all wave packets.
The above expression forψ(r ,t) is explained as follows: the
initial wave function is expanded in terms of the frozen Gaussian
wave packets and each packet is propagated by classical
mechanics with its shape kept fixed. The final wave function is
expressed as a sum of thus propagated frozen wave packets
multiplied by the factorCq0,p0,t exp[iSq0,p0,t]. The initial param-
eters (q0, p0) of trajectories are selected by the well-established
Monte Carlo procedure. This propagation is made on a single
adiabatic potential energy surface and is carried out up to the
region of potential energy surface crossing. It is assumed that
the nonadiabatic transition occurs locally and instantaneously
at the positionqI where the adiabatic potential energy difference
becomes minimum along the trajectory. Once this transition
position is found, the nonadiabatic transition is taken into
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semiclassical theory, nonadiabatic transition. Figure 1. Two basic elements of dynamics: (i) propagation on a single

potential and (ii) nonadiabatic transition. In the classically allowed case,
the nonadiabatic transition occurs atXNA. In the classically forbidden
case, the transition region spans the interval (xi, xf), wherexi and xf

correspond to the turning points.

ψ(r ,t) ) ∫traj

dq0 dp0

(2π)N
g(r ;qt,pt)Cq0,p0t

×

exp[iSq0,p0,t
]∫dr 0 g*( r0;q0,p0) ψ(r0,t)0) (1)

g(r ;q,p) ) (2γ
π )N/4

exp[-γ(r - q)2 + ip‚(r - q)] (2)
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account as follows. The local separability in the vicinity ofqI

is assumed and the one-dimensional direction of transition is
determined. If the nonadiabatic coupling vector is available, the
one-dimensional cut is made along that direction. If it is not
available, we can determine the direction from the Hessian
there.39 If the geometry of the potential energy surface-crossing
seam is known in advance, we can take the direction perpen-
dicular to the seam surface. By using one of these methods, we
can reduce the problem to the one-dimensional one and apply
the ZN theory.

First, the frozen Gaussian wave packets just before the
transition on the initial adiabatic surfacei are expanded as

where{φi(E,r )} are the energy normalized eigenfunctions in
the electronic statei at q ∼ qI. Right after the transition the
coefficientRi(E) changes to

where f and m specify the final electronic state and the mode
on that state, respectively. The mode specifies one of the
following three:reflection, passing, or hopping (see Figure 2).
Namely, the coefficientTfi

m represents the transition amplitude
for the reflection or passing on the same adiabatic potential
energy surface as the initial one, f) i, or hopping to the other
potential energy surface, f* i, after the transition, and is directly
given by the ZN formulas including dynamical phases.

The final wave functionæf(r ) right after the transition is thus
given by

where {φf(E,r )} are the energy eigenfunctions in the final
electronic statef. The functionæf(r ) is expanded in terms of
the frozen Gaussian wave packetsgf(r ;qF,pF) of the same shape
as before and the expansion coefficientsFfi are given by

whereqF andpF are the position and momentum right after the
transition. The positionqF is not necessarily the same asqI,
because in the case of classically forbidden transition when the
energyE is lower than the crossing point, the positionsqI and
qF are turning points on the respective potential energy curve
and are different from each other. The frozen Gaussian wave
packetsgF(r;qF,pF) are further propagated on the potential energy
surface f. Then the final wave function at timet after the
transition is expressed as

wheretNA represents the time of nonadiabatic transition and (qt,
pt) are the coordinate and mometum at timet of the trajectory
started from (qF, pF). In the actual computations the integrals
with respect toqF andpF are replaced by the sum of the main
components of the wave packets right after the transition.27,38

The analysis of the function|Ffi (qF,pF,qI,pI)| indicates that the
main components can be found from the general principle of
nonadiabatic transition in the one-dimensional system.

Numerical examples are shown in Figures 3 and 4.38 This is
a two-dimensional H2O model system in a continuous wave
(CW) laser field of wavelength 300 nm (about 4.1 eV). The
laser intensity is 1013 W/cm2. The bending and rotational
motions are neglected with the bending angle fixed at the
equilibrium position, i.e., 104.52°. The potential enegy surfaces
of the ground and first excited states and the transition dipole
moment are the same as those in.40 Initial wave packet is a
symmetric Gaussian of the full width at half-maximum 0.5 au
centered atR ) (5.0 au, 3.0 au)T on the upper adiabatic potential
energy surface. Because the Floquet or dressed-state representa-
tion is used, the upper adiabatic state corresponds to the dressed
groundstate and the process mimics the photodissociation. The
mean momentum of the initial wave packet is zero. Figure 3
shows the two potential energy surfaces, and Figure 4 presents
a comparison between the present semiclassical resutls (Figure
4b,d) and the exact quantum mechanical numerical solutions
(Figure 4a,c). The semiclassical method works well. The final
population on the excited state, namely the photodissociation
probability, is 29% in the semiclassical approximation in
comparison with 35% of the excat quantum result. The
propagation period and the number of trajectories used are 20
fs and 7000, respectively.

A method similar to that mentioned above can be applied to
laser control of chemical dynamics. We have recently formulated
a semiclassical optimal control theory based on the gradient
search method41 in which the time correlation function com-
posed of the forward and backward time-dependent wave
functions is the basic quantity to be evaluated.38,42 This
semiclassical theory can now deal with realistic systems with
more than three degrees of freedom42 that cannot be teated by
the full quantum optimal control theory.16 Here we do not go

Figure 2. Interpretation of the mode: reflection, passing and hopping.
V1(R) andV2(R) represent adiabatic potentials. Reprinted with permis-
sion from ref 27. Copyright 2004 American Institute of Physics.

gI(r ;qI,pI,t) ) ∫dE Ri(E) φ
i(E,r ) (3)

Rm
f (E) ) Tfi

mRi(E) (4)

æf(r ) ) ∑
m
∫dE Rm

f (E) φ
f(E,r ) (5)

Ffi(qF,pF,qI,pI) ) ∫dr gF
/(r ;qF,pF) æf(r ,qF,pF:qI,pI) (6)

ψf(r ,t) ) ∫traj

dq0p0

(2π)N∫traj

dqF dpF

(2π)N
gF(r ;qt,pt)CqF,pF,t ×

exp[iSqF,pF,t]Ffi(qF,pF,qI,pI)Cq0,p0,tNA
×

exp[iSq0,p0, tNA
]∫dr0 gI

/(r0;q0,p0) ψi(r0,t)0) (7)
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into the details about this and the reader should refer to the
above references.

III. Generalized Trajectory Surface Hopping Method

The simplest method to treat nonadiabatic dynamics is the
trajectory surface hopping (TSH) method introduced by Bjerre
and Nikitin28 and by Tully and Preston,29 in which classical
trajectories hop at the potential energy surface crossing accord-
ing to the nonadiabatic transition probability evaluated by the
Landau-Zener formula or the solution of time-dependent
coupled equations. At each occasion a random number is
generated and the nonadiabatic surface hopping is made, if the
calculated probability is larger than the random number (anteater
procedure). Because of its simplicity the method is applicable
to large systems and has enjoyed widespread applications.32-34

Various modifications from the original version have been made
especially by Tully and by Truhlar and co-workers.30,31 There

still remain, however, some crucial problems related to (i)
definition of classical trajectory, (ii) localizability of the
transition, (iii) energy and angular momentum conservation, and
(iv) treatment of classically forbidden transition in which the
energy is lower than the energy at surface-crossing point. In
theadiabaticstate representation, a classical trajectory runs on
a single adiabatic potential energy surface until it reaches the
surface-crossing region and the nonadiabatic transition can be
assumed to occur locally there. In this case it is not conveneint
to solve the time-dependent coupled equations to estimate the
transition probability. The time-dependent coupled equations
convenient to solve are given in thediabaticstate representation,
in which the localizability of the transition cannot hold well
and the unique definition of classical trajectory becoms ques-
tionable. If one uses the Landau-Zener formula in theadiabatic
representation, these problems are not very serious; but the
Landau-Zener formula does not work well when the energy is

Figure 3. Two-dimensionalmodel potentials of H2O in the dressed state picture. The upper adiabatic potential is thus the dressed ground state.
Reprinted with permission from ref 21. Copyright 2005 World Scientific Publishing Co.

Figure 4. Final wave packets after photodissociation. (a) and (c): quantum mechanical numerical solutions of coupled Schroedinger equations. (b)
and (d): corresponding semiclassical results. (a) and (b): on the ground state. (c) and (d): on the excited state. Reprinted with permission from ref
21. Copyright 2005 World Scientific Publishing Co.
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close to the surface-crossing energy. The most serious problem
is that the classically forbidden transitions cannot be treated by
any one of these methods. It is well-known that the Landau-
Zener formula cannot treat those transitions, but even the
solutions of the time-dependent coupled equations and the
widely used fewest switches method of Tully30 cannot properly
take into accout those classically forbidden transitions.

If we employ the ZN formulas in theadiabatic state
representation, all the problems mentioned above can be solved.
Because the localizability holds well, classical trajectories can
run on a single adaiabatic potential energy surface and thus the
effects of relaxation can be taken into account easily. We have
first applied the ZN formulas to the DH2+ system and
demonstrated that the method works well in comparison with
the exact quantum mechanical numerical solutions.43 Importance

of the classically forbidden transitions has been clearly dem-
onstrated. The Landau-Zener formula gives a bit too small
results even at high energies. It was found that in multidimen-
sional systems classically forbidden transitions play relatively
more important roles than in the case of one-dimension because
of energy transfer among many degrees of freedom. Some of
the results are shown in Figures 5 and 6. The quantum results
show violent oscillations which are resonances due to the
potential well of the ground state. In the TSH calculations all
the long lived trajectories are killed, because we are not
interested in resonances here. This reaction system is, however,
a relatively simple one, because the surface-crossing seam exists
a bit away from the reaction zone, only the Landau-Zener type
of crossing in which the two diabatic potential curves have the
same sign of slopes appears, and the geometry of the seam

Figure 5. Total cumulative charge-transfer probabilities for H2 + D+ f H2
+ + D. Dashed line: exact quantum mechanical numerical solution.

Solid line: TSH results with use of the Zhu-Nakamura formulas. Dash-dot line: TSH results with use of the Landau-Zener formula. Reprinted
with permissino from ref 43. Copyright 2001 American Institute of Physics.

Figure 6. Initial vibrational state specified cumulative reaction probabilities forV ) 2. Dashed line: exact quantum mechanical numerical solution.
Solid line: TSH results with use of the Zhu-Nakamura formulas. Dash-dot line: TSH results with use of the Landau-Zener formula. Reprinted
with permission from ref 43. Copyright 2002 American Institute of Physics.
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surface can be well defined. Recently, we have generalized this
method so that it can be applied to any general large systems.39

The method is composed of the following algorithms: (i)
the transition position is detected along each classical trajectory,
(ii) the direction of transition is determined there and the one-

dimensional cut of the potential energy surfaces is made, (iii)
judgment is made whether the transition is Landau-Zener type
or nonadiabatic tunneling type, and (iv) the transition probability
is calculated by the appropriate ZN formula. The transition
position can be simply found by detecting the minimum energy
separation between the two adiabatic potential energies. The
determination of transition direction has the following options
as mentioned in the previous section: (a) direction perpendicular
to the seam surface, if the latter can be well defined in advance;
(b) direction of the nonadiabatic coupling vector, if it is
available; (c) direction estimated from the Hessian. If the seam
surface is known well, method a is the best, because the
nonadiabatic transition in the direction parallel to the seam
surface is the so called Rosen-Zener type and can usually be
neglected. In general, however, the geometry of the seam surface
cannot be known in advance. The second best in that case is
the direction of the nonadaiabtic coupling vector. However, the
vector is not necessarily available, in general, unfortunately. In
such a case, the last choice is to take the direction of the
eigenvector of the only nonzero eigenvalue of the rank one
Hessian matrix of the difference between the two adiabatic
potential energy surfaces.39 In the case of classically forbidden
transitions, the nonadiabatic transition and the nuclear tunneling

Figure 7. Adiabatic potential energy surfaces for the DIM model of
CH2 at the HCH angle fixed at 110°. Reprinted with permission from
ref 39. Copyright 2006 American Institute of Physics.

Figure 8. Initial rovibrational state specified reaction probabilities. Solid line: exact quantum mechanical numerical solution. Solid line with solid
square: generalized TSH with use of nonadiabatic coupling vector. Solid line with open circle: generalized TSH with use of Hessian. Reprinted
with permission from ref 39. Sur)1(2) in the figure means the ground (excited) potential energy surface. Copyright 2006 American Institute of
Physics.
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are coupled; i.e., they cannot be treated separately. Besides, the
transitions are not vertical anymore. The ZN formulas properly
describe the nonvertical transitions and provide the overall
transition probability. The position right after the transition is
not equal anymore to the position before the transition. The
total angular momentum conservation apparently violated by
the nonvertical transition can be recovered by appropriately
rotating the system. The detailed recipe is not described here
but can be found in ref 39. The energy conservation is not a
problem at all, because the classically forbidden transitions are
treated properly and the total energy after the transitions is
conserved.

This generalized TSH (ZN-TSH) has been applied to a model
triatomic system mimicking CH2, which has a conical intersec-
tion, and both Landau-Zener and nonadiabatic tunneling types
of transitions appear.39 The ground and excited potential energy
surfaces are constructed by using the DIM (diatomics in
molecule) method (see Figure 7). The numerical results in
comparison with the excat quantum mechanical numerical
solutions are shown in Figure 8. The oscillations in the quantum
results are again resonances due to the attractive well in the
ground state. Apart from these oscillations the ZN-TSH works
acceptably well. In these figures the two ZN-TSH results are
compared with respect to the choice of the transition direction:
(i) the direct use of nonadiabatic coupling vector and (ii) the
Hesssian approximation. It is clearly seen that the Hessian
approximation works well. These successful demonstrations
confirm the potentiality of applying the present method to
general large systems of general potential energy surface
topology. With the present method the very popular classical
mechanical MD (molecular dynamics) simulation method could
be easily improved and extended so as to take into account the
nonadiabatic transitions properly. Finally, it would be worth-
while to mention that another important quantum mechanical
effect, namely, quantum mechanical tunneling, can also be taken
into account in the present methodology. To do that, it is crucial
to detect caustics (turning points in one-dimensional case) along
trajectories. This can be easily done, as will be explained later
in section 5.

IV. Semiclassical Theory of Nonadiabatic Thermal Rate
Constant and Electron Transfer

Another interesting subject is the direct evaluation of thermal
rate constants for electronically nonadiabatic chemical reactions.
“Direct” means not from the detailed scattering matrix calcula-
tions, as has been well discussed by Miller and co-workers for
the single surface adiabatic processes.44,45 Extending the trace
formula by Miller, we have formulated the thermal rate constant
for nonadiabatic reactions with use of the Zhu-Nakamura
formulas.35,46In the simple case that the transition state is created
by the nonadiabatic tunneling type surface crossing, we have
derived a simple formula by explicitly considering the geometry
of crossing seam surface and the coordinate-dependent non-
adiabatic transition probability on that.35 The formula was
demonstrated to work well in the case of one- and two-
dimensional model systems and is expected to be applicable to
high dimensional systems with use of the Monte Carlo sampling
method.

We start with the rigorous quantum mechanical rate contant
in terms of the flux-flux correlation function:47

where Zr is the partition function of the reactant,h is the

Heaviside step function, andF ) (i/p)[H,h] is the flux operator
through the dividing surface defined asS(Q) ) 0, with Q
denoting the set of mass reduced Cartesian coordinates. With
use of the dividing surfaceS(Q) ) 0 the flux operatorF can be
expressed as

wherePT is the transposed momentum vector. Replacing the
time-dependent Heaviside function by its classical analogue and
the quantum mechanical trace by the phase space integration,
we have

whereEs is the translational energy component perpendicular
to the seam surface and the classical Heaviside function is
replaced by the ZN nonadiabatic tunneling probabilityP(Es) at
the seam surface. Carrying out the integration with respect to
all the components of momentum except forps, which is the
component normal to the seam surface and introducing the
quantum mechanical corrections to the partition functions, we
finally obtain

whereZq
† and Zr

q are the quantum mechanical partition func-
tions of activated complex and reactants, respectively. The
effective coordinate-dependent transmission probabilityP(â,Q)
is defined by

The above formula has been tested by using the model collinear
reaction described by the following diabatic potentials:48

whereVc is the diabatic coupling between the two potentials
and the parameters used areD ) 4.9 eV,â ) 1.877 Å, re )
0.7417 Å,rc ) 1.5707 Å,Rc ) 1.5rc,γ ) 0.01 Å-2 andA )
0.1 eV. Figure 9 shows the contour plot of the adiabatic ground
state in the mass reduced coordinates.

Figure 10 shows the Arrhenius plot of the numerical results
of the thermal rate constants. The solid circles are the exact
quantum mechanical numerical solutions. The thick solid line
represents the results of the present formulation, namely the
results of eq 11. The thin solid line is the result of using the
classical partition function instead of using the proper quantum
one. It is clearly seen that the quantum correction of the partition
function is important. The dashed lines are the results of the

F ) PT∇S(Q) δ[S(Q)] (9)

kZr ) 1

h3N∫dP dQ exp(-âH)PT∇S(Q) δ[S(Q)] P[Es,S(Q)]

(10)

k )
Zq

†

Zr
qx 1

2πâ

∫dQ P(â,Q)|∇S(Q)|δ[S(Q)] exp[-âV(Q)]

∫dQ δ[S(Q)] exp[-âV(Q)]
(11)

P(â,Q) ) â∫0

∞
dEs exp(-â[Es - V(Q)])P(Es,Q) (12)

V1(r,R) ) D(1 - exp[-â(r - re)])
2 +

1
2
D(1 + exp[-â(R + 1

2
r - re)])2

- 1
2
D (13)

V2(r,R) ) D(1 - exp[-â(R - 1
2
r - re)])2

+

1
2
D(1 + exp[-â(R + 1

2
r - re)])2

- 1
2
D (14)

Vc(r,R) ) A exp(-γ[(r - re)
2 + (R - Rc)

2]) (15)

kZr ) lim
tf∞

Tr[exp(-âH)F exp(iHt/p)h exp(-iHt/p)] (8)
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conventional transition state approximation in which the trans-
mission probability is calculated only at the minimum energy
crossing point (MECP) and its coordinate dependence is
neglected. The thin (thick) dashed line corresponds to the results
using the classical (quantum) partition function. These test
calculations clearly demonstrate that the present formulation
gives correct estimates, if the coordinate-dependent nonadiabatic
tunneling transition probability and the quantum mechanical
correction of the partition function are properly taken into
account.

The present treatment is quite a simple one and the following
two generalizations are naturally required: (i) applications to
multidimensional complicated molecular systems, and (ii)
formulation applicable to a more general case that the ordinary
transition state and the potential surface crossing are separated.
The former may be done without difficulty by using the well-
established Monte Carlo technique. The latter case requires a
somewhat new formulation and now is in progress.46

Electron transfer, which is a very important process in
chemistry and biology,49,50 can be a nice subject to be treated
by the present theory. Not only in the original Marcus theory
but also in the conventional treatments of electron transfer is
the electronic coupling dealt with by the perturbation theory or
by the Landau-Zener formula. Now we know that the inter-
mediate to strong diabatic coupling cases and the classically
forbidden transitions cannot be properly described by these

treatments. It is natural to think about incorporation of the ZN
formulas into the theories of electron transfer. The first step to
do this is to reformulate the famous Marcus formula under the
assumption of thermally activated process with the fast dielectric
relaxation. This was done in ref 36. Here, we consider only the
so-called normal case that corresponds to the nonadiabatic
tunneling type of potential crossing and present only the essential
portion of the formulation together with some numerical results.
We can start from eq 11. Because the electron-transfer rate is
described in the representation of free energy, we introduce the
free energy by

and rewrite the thermal rate constant as

whereZcl is the denominator in eq 11 and the average transition
probability Ph(â,ê) is defined by

In the linear response limit, the free energiesFj(ê) (j ) 1, 2) of
the donor and acceptor can be expressed by parabolic functions
of ê as

whereê01 andê02 are the positions of the free energy minima
of donor and acceptor, respectively, and∆G represents the
exothermicity of the reaction which is determined from eq 20.

From the above equations we can finally obtain

with

wherekMarcus is the Marcus formula defined by

andHAD is the electronic coupling between acceptor and donor.
The reorganization energyλ is defined by

The effects of nonadiabatic transition and tunneling are

Figure 9. Contour plot of the ground adiabatic potential energy surface
for the 2D model. The dash line represnts the seam surface. Reprinted
with permission from ref 35. Copyright 2004 American Institute of
Physics.

Figure 10. Arrhenius plot of the thermal rate constants for the 2D
model. Solid circle: exact quantum mechanical numerical solution.
Thick solid line: present nonadiabatic TST. Thick dashed line: present
nonadiabatic TST with use of the minimum energy crossing point
(MECP) approximation. Thin solid line: present nonadiabatic TST
without the quantum mechanical correction to the partition function.
Thin dashed line: present nonadiabatic TST with use of MECP without
the quantum mechanical correction to the partition function. Reprinted
with permission from ref 35. Copyright 2004 American Institute of
Physics.

exp[-âF1(ê)] ) ∫dQ exp[-âV1(Q)]|∇S(Q)|δ(ê-S(Q))

(16)

k )
Zq

†

Zr
q
Zcl

-1x 1
2πâ

Ph(â,ê0)∫dê δ(ê-ê0) exp[-âF1(ê)] (17)

Ph(â,ê) )
∫dQ exp[-âV1(Q)]|∇S(Q)|δ(ê-S(Q)) P(â,Q)

∫dQ exp[-âV1(Q)]|∇S(Q)|δ(ê-S(Q))
(18)

F1(ê) ) - 1
â

ln[∫dQ exp[-âV1(Q)]|∇S(Q)|δ(ê-S(Q))] )

1
2

ω2(ê - ê01)
2 (19)

F2(ê) ) - 1
â

ln[∫dQ exp[-âV2(Q)]|∇S(Q)|δ(ê-S(Q))] )

1
2

ω2(ê - ê02)
2 + ∆G (20)

k ) κkMarcus (21)

κ ) pω
2πHAD

2x λ
πâ

Ph(â,ê0) (22)

kMarcus)
HAD

2

p xπâ
λ

exp[-
-â(λ + ∆G)2

4λ ] (23)

λ ) 1
2

ω2(ê02 - ê01)
2 (24)
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properly taken into account byκ and the main task is to evaluate
the average transition probabilityPh(â, ê) in which the non-
adiabatic tunneling probabilityP(Es,Q) on the seam surface
given by the ZN formula plays the essential role (see eqs 18
and 12). It should also be noted that the electronic coupling
HAD is assumed to be constant in the Marcus formula, but this
is not necessary in the present formulation. The couplingHAD

cancels out ink of eq 21 and the ZN probability can be
calculated from the information of adiabatic potentials (see
Appendix).

The above formulation can be directly applied to multidi-
mensional systems and its numerical results for the system of
twelve harmonic oscillators are shown below. The model
potentials used are

where the exothermicity∆G is taken to be zero and the
parametersωj and the reorganization energiesλj ) (ωjQ0j)2/2
are as follows:

The reaction coordinateê is defined asê ) V1 - V2 and thus
the seam surface corresponds toê ) ê0 ) 0. The actual
computations are carried out by using the Monte Carlo method.
The results are shown in Figures 11 and 12.

Figure 11 shows the Arrhenius plot of the rate for the weak
electronic coupling case (HAD ) 0.0001 au) in which the
perturbation theory works. The present reults (filled circles)
agree well with those of Bixon-Jortner perturbation theory
(solid line)51 over the whole temperature range, whereas the
Marcus formula (dashed line) works only at high temperatures
because the nuclear tunneling effect is not taken into account.

Figure 12 shows the rate against the coupling strength at
temperatureT ) 500 K. The Bixon-Jortner (dash line) and
Marcus (dotted line) theories break down as the electronic
coupling strength increases. The MECP approximation within
the present formulation (solid line with open square) agrees well
with the present results without MECP (solid line with open
circle). This is, however, simply because the electronic coupling

is assumed to be constant. As mentioned before, the MECP
approximation is considered not to be good enough in general.
It should also be noted that the present theory works all right
in the case of general asymmetric potentials,36 because the ZN
formulas are valid for general curve-crossing problems.

It would be very useful and convenient for the interpretation
of experimental data, if we can introduce a certain effective
one-dimensional model for a collection of harmonic oscillators.
Actually, this can be done to a good extent by using the method
proposed by Dogonadze and Urushadze.52 The effective one-
dimensional frequencyω is defined as

The corresponding potentials are given by

with

The numerical results in comparison with the full dimensional
calculations are shown in Figure 13. The effective one-
dimensional model based on the present formulation (dash line)

Figure 11. Arrhenius plot of the electron-transfer rate atHAD ) 0.0001
au. Solid line: Bixon-Jortner perturbation theory. Full circle: present
result. Dashed line: Marcus’ high temperature theory. Reprinted from
ref 36.

V1 )
1

2
∑
j)1

12

ωj
2Qj

2 (25)

V2 )
1

2
∑
j)1

12

ωj
2(Qj - Q0j)

2 (26)

ωj (j ) 1-12) (cm-1) )
462, 511, 584, 602, 628, 677, 1007, 1169, 1252, 1334, 1403, 1548

λj (j ) 1-12) (cm-1) )
3038, 1372, 775, 1039, 2125, 1196, 269, 638, 351, 625, 275, 100

Figure 12. Electron-transfer rate against the electronic coupling
strength atT ) 500 K. Solid line with circle (square): present results
without (with) the MECP approximation. Dashed line: Bixon-Jortner
theory. Dotted line: Marcus' high temperature theory. Reprinted from
ref 36.

Figure 13. Electron-transfer rate against electronic coupling strength
at T ) 500 K in the symmetric potential case. Solid line: present full
dimensional result. Dashed line: present result in the effective one-
dimensional model. Reprinted from ref 36.

ω2 )
1

λ
∑

j

ωj
2λj (27)

V1(Q) ) 1
2

ω2Q2 (28)

V2(Q) ) 1
2

ω2(Q - Q0)
2 + ∆G (29)

Q0 ) 1
ω

x2λ (30)
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agrees well with the present full dimensional calculations (solid
line), indicating the acceptability of the effective one-dimen-
sional model, at least in the case of symmetric potentials. The
present results are also compared with the exact quantum
mechanical calculations in the one-dimensional flux-flux
correlation function approach47 and are found to be in good
agreement with the latter (not shown here).

As demonstrated here, the incorporation of the ZN formulas
can very much improve the applicability of the theories of
electron transfer. A similar improvement should be carried out
in the so-called inverted regime. It should also be noted that
the present adiabatic limit is different from the solvent controlled
adiabatic limit where the rate saturates in the strong coupling
limit and the saturation value is determined by the dielectric
relaxation time.50 The present treatment should thus be extended
so as to take into account the effects of solvent dynamics. These
studies are now in progress.

V. Inclusion of Tunneling Effect

Needless to say, tunneling is the most well-known quantum
mechanical effect, and it is naturally desirable to take the effect
into account by using classical trajectories. Generally speaking,
there are three kinds of problems: (i) energy splitting in a sym-
metric double well potential, (ii) decay of metastable state
through tunneling, and (iii) tunneling in reaction. For the first
two problems we have recently been successful in formulating
a practically useful method applicable to realistic polyatomic
molecules.53 This includes an efficient method to carry out the
time-consuming accurate ab initio quantum chemical computa-
tions of potential energy surfaces. The basic idea is the same
as the instanton theory;54,55 but a very efficient method to find
the instanton trajectory has been devised. The method has been
applied to real polyatomic molecules and very good agreements
are obtained with the experiments.53 The detailed discussions

Figure 14. (a) Trajectories and caustics (*) on the Henon-Heiles potential for the initial conditionx0 ) -0.43 andy0 ) -0.39. Partial destruction
of regular caustics is seen. (b) Poincare surface corresponding to (a). (a) and (b) reprinted from ref 37. Copyright 2004 World Scientific Publishing
Co.
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are not given here, however, and the reader should refer to ref
53. Instead, the third problem mentioned above is discussed
here.

Naturally, numerous works have been done by many authors
to deal with tunneling in chemical reactions such as the classical
S matrix theory,56 various versions of transition state theory,57

and the anti-Newtonian mechanics.58 Here we consider a
possible extension of the ZN-TSH method mentioned in section
III or the semiclassical method in section II. This means that it
is desirable, first of all, to devise a method to efficiently detect
caustics along classical trajectories in real coordinate space,
because the caustics provide the position for a tunneling
trajectory to emanate into a classically forbidden space.
Recently, an efficient method has been proposed to locate
caustics of classical trajectories on-the-fly.37 One such approach
has been proposed before to propagate∂q(t)/∂q(0), which is a
minor of the monodromy matrix,59,60 where q(t) is a time-
dependent generalized coordinate. We believe, however, that
the present method is much more stable than theirs, because

their final differential equation to be solved is second-order and
the solutions may become unstable due to exponentially growing
and decaying terms.

Our approach is to propagate∂p(t)/∂q(t), which is a solution
of the Riccati-type nonlinear differential equation as described
below. At caustics this quantity diverges so that an appropriate
transformation is required to detect caustics. In a 2N-dimensional
phase space, theN-dimensional Lagrange manifold is formed
by a continuous set of the trajectories{q(t), p(t)}. In this
manifold the matrix composed of

satisfies the following Riccati-type differential equation along
the classical trajectory:

Figure 15. (a) Trajectories and caustics (*) on the Henon-Heiles potential for the initial conditionx0 ) -0.43 andy0 ) -0.41. The classical
dynamics is chaotic. (b) Poincare surface corresponding to (a). Torus is totally destroyed. (a) and (b) reprinted with permission from ref 37. Copyright
2004 World Scientific Publishing Co.

Aij )
∂pi

∂qj
i. j ) 1, 2, ...,N (31)

∂A
∂t

) -Hqq - HqpA - AHpq - AHppA (32)

Feature Article J. Phys. Chem. A, Vol. 110, No. 38, 200610939



whereHqq, Hqp, etc. are the matrixes of the second derivative
of the classical Hamiltonian taken along the trajectory, i.e.,Hqq

) ∂2H/∂q∂q, etc. At caustics the solution of this differential
equation diverges

Beyond this point further solution of the differential equation
is not possible; beisdes, it is not appropriate to detect the caustics
accurately from the divergence. So it is necessary to make an
appropriate transformation to the matrixA. To clarify the basic
idea, let us consider the one-dimensional case for the moment.
At the turning pointp(q) ) 0 andA diverges. By invertingA
to Ã ) ∂q/∂p, one eliminates the divergence and the propagation
of Ã proceeds smoothly through caustics with the zero detected
as the caustics. This inversion transformation is equivalent to
the canonical transformation: (p, q) f (-q̃, p̃). Equation 32
does not change under this transformation. A useful approach
in the N-dimensional case is to invert only the diverging
element(s) of the matrix. Suppose the diverging element isANN,
the transformation (pN, qN) f (-q̃N, p̃N) is made. Once the
propagation runs through the divergent region and the caustics
is detected, the inverse transformation is applied in exactly the
reverse order to resume the propagation further. The fourth-
order Adams-Bashforth-Moulton predictor-corrector scheme
is used to solve the differential equation and the procedure is
confirmed to be quite stable, although some care should be taken
in choosing the time step not to miss closely occurring caustics.

The above method has been applied to the following two
cases: (i) two-dimensional Henon-Heiles potential and (ii) three-
dimensional chemical reaction in a model CH2 system forJ
(total angular momentum)) 0.37 The Henon-Heiles potential
used is as follows (in atomic units):

The classical trajectory is generated from the turning pointp(0)
) 0, which corresponds to the initial conditionA-1 ) 0. After
a short time propagation ofA-1 the propagation is continued
with the matrixA. Figures 14 and 15 show the results. The

initial conditions are (x0, y0) ) (-0.43,-0.39) for Figure 14
and (-0.43,-0.41) for Figure 15. Figure 14 (15) corresponds
to a somewhat irregular (chaotic) case. In the regular case the
caustics appear along the envelope of the family of trajectories
(see Figure 14a), whereas the caustics are distributed rather
randomly with the tori totally destroyed as the system becomes
chaotic, as seen in Figure 15a. The Poincare surface section
shows discontinuities and separatrices (Figure 15b). The present
method works well even in such chaotic cases. Figure 16 shows
some reactive trajectories together with the caustics along them.
The potential energy surface used is the ground adiabatic state
obtained from the DIM model of CH2. The collision energy
and the initial rovibrational states are 1.2 eV and (V ) 0, j )
0), respectively. The initial condition for the matrixA is obtained
by using the energy and momentum conservation in the
asymptotic region.

Unfortunately, there is no convincingly good theory yet how
to run a tunneling trajectory from the caustics. An extension of
the ordinary WKB type solution into the classically forbidden
region was discussed by Takada and Nakamura61 with use of
the one-dimensional connection formulas in the vicinity of
caustics to connect the wave functions between classically
allowed and forbidden regions. However, this cannot be practical
for multidimensional systems higher than two dimensions,
unfortunately. The anti-Newtonian mechanics, on the other hand,
has been considered by Takatsuka and co-workers;58 but the
formulation is not symmmetric with respect to the generalized
corrdinates and momenta, as it should be, unfortunately, and
formally cannot be correct. Some simple trajectories such as
straight lines, however, have been used quite often in practical
computations, and they are actually found to work relatively
well.62 This simple idea of straight line trajectories starting from
the caustics normal to the classical trajectory has been applied
to calculate the thermal rate constant in the H3 system.63 The
results are shown in Figure 17. The results with tunneling
included agree well with the quantum mechanical transition state
theory calculations, although it is not shown here.

As this example demonstrates, the important quantum me-
chanical tunneling effect can also be simply incorporated into
the methods explained in sections II and III. Especially, the ZN-

Figure 16. Family of reactive trajectories and caustics (x) on the ground adiabatic potential energy surface of the model CH2. Reprinted with
permission from ref 37. Copyright 2004 World Scientific Publishing Co.

Det|A(tcaustics)| ) ∞ (33)

H ) 1
2
(px

2 + py
2) + 1

2
(x2 + y2) + (x2y - 1

3
y3) (34)
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TSH method can incorporate the nonadiabatic transition and
the tunneling simply by running trajectories.

VI. Concluding Remarks

Nonadiabatic transitions due to potential energy surface
crossings are definitely playing crucial roles in various kinds
of chemical processes. They (i) are important to comprehend
the mechanisms of chemical dynamics occurring in nature, (ii)
provide us guiding principles how to improve the efficiencies
of the dynamics, (iii) present useful tools to control the reactions
by using external fields such as lasers, and (iv) play key roles
to manifest and create new functions of molecules. The Zhu-
Nakamura (ZN) theory presents a set of analytical formulas to
describe the dynamics in the potential curve-crossing problems
and can play basic roles in the studies mentioned above.
Although the theory is a one-dimensional one, it works well
mainly because the nonadiabatic coupling is a vector defined
in multidimensional space.

In this Feature Article, the above subject (i) has been picked
up and the developments of new semiclassical methods with
the ZN formulas incorporated and their applications to various
dynamic processes have been explained and discussed on the
basis of the recent activities done in the author’s research group.
The semiclassical frozen Gaussian wave packet propagation
method based on the Herman-Kluk type of formulation and
the generalized TSH (trajectory surface hopping) method can
now be applied to realistic large systems. The classically
forbidden nonadiabatic transitions, which play significant roles
in many cases can be treated properly. Quantum mechanical
tunneling effects can also be taken into account in these
treatments by detecting the caustics along the classical trajec-
tories. Obviously, the frozen Gaussian wave packet propagation
method is more accurate than the TSH method. The generalized
TSH method would be, however, quite useful and convenient
to obtain some averaged physical quantities and to qualitatively
comprehend the mechanisms of large systems, if the very much
detailed information is not required.

The nonadiabatic transition state theory is formulated and the
direct evaluation of thermal rate constant of nonadiabatic

chemical reactions becomes possible, although a further gen-
eralization of the formulation is necessary so that we can treat
a general case that the potential surface crossing and the
transition state are separated. Electron transfer is another
important subject, because it plays crucial roles in various
chemical and biological systems. As a sort of first step, the
famous Marcus formula has been modified with use of the ZN
formulas and the new formula has been found to work well in
the whole range of electronic coupling strength. This has been
done for the so-called normal case in which the potential
surfaces have the nonadiabatic tunneling type crossings. A
similar formulation in the inverted case and also the extension
of the formulation are necessary so as to include the effects of
solvent dynamics.

The other subjects mentioned above such as the manifestation
and creation of molecular functions and the laser control of
chemical dynamics have not been discussed in this Feature
Article. These will be reviewed in near future elsewhere.

VII. Appendix: Zhu -Nakamura Fomluas

Here the final expressions of the Zhu-Nakamura formulas
that can be directly applied to practical problems are summarized
for the two types of transitions: (1) Landau-Zener type of
transition in which the two diabatic potentials have the same
sign of slopes and (2) nonadiabatic tunneling type of transition
in which the two diabatic potentials have opposite signs of
slopes. It should be noted that there are some typographical
errors in the expressions given in refs 1 and 11. The necessary
corrections are explained in ref 2. The whole set of correct
expressions is provided here.

It should be noted that the formulas presented here contain
some empirical corrections that have been introduced to cover
some small limiting regimes.1,11,13

1. Landau-Zener Type of Transition. The two dimension-
less basic parametersa2 andb2 in terms of the diabatic potentials
are defined as

Figure 17. Thermal reaction rate constant of H3. Solid line: without tunneling Dotted line: with tunneling.
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and

with F ) x|F1F2|, whereFj (j ) 1, 2), VX, and EX are the
slopes of diabataic potentials, the diabatic coupling, and the
energy at the potential crossing, respectively. These parameters
can be re-expressed in terms of the adiabatic potentials (E1 and
E2 with E2 > E1) as given below. This means that the
diabatization of adiabatic potentials are not necessary; besides
the transition probabilities can be estimated more accurately with
the use of these parameters expressed in terms of adiabatic
potentials:

and

where

The positionR0 corresponds to the minimum separation of the
two adiabatic potentials, andT1

0 and T2
0 are defined as (see

Figure A1)

In terms of the Stokes constantU1 the reduced scattering matrix
SR can be quantum mechanically exactly given by

where

The overall nonadiabatic transition probability between the two
adiabatic states is given by

with

and

wherep represents the nonadiabatic transition probability for
one passage of the crossing point. It should be noted that the
above expressions are quantum mechanicallyexactas far as
the Stokes constantU1 is exact. Below, the semiclassical
expressions in the Zhu-Nakamura theory are given.

1.1. Case A: Eg EX. The Stokes constantU1, which is
actually a function of the parameters is given as

where

and

The parametersσ andδ are defined below in section 1.3. The
nonadiabatic transition amplitude, which connects the wave
function just before and right after the transition at the avoided
crossing is given by

1.2. Case B: Ee EX. The Stokes constantU1 is given by

and

The probabilityp is given by

where

and

1.3. Definitions ofσ, δ, andδψ. These parameters introduced
above are defined here. The expressions ofσ and δ are
dependent on the energy as described below. Becauseσ0 and
δ0, which appear below, and the parameterδψ are common in
the all energy regions, these are defined first.

U1 ) x1
p

- 1 exp(iψ) (A.12)

p ) exp[- π
4a( 2

b2 + xb4 + 0.4a2 + 0.7)
1/2] (A.13)

ψ ) σ + φS ) σ -
δψ

π
+

δψ

π
ln(δψ

π ) - argΓ(iδψ

π ) - π
4

(A.14)

IX ) (x1 - p exp(iφS) - xp exp(iσ0)

xp exp(-iσ0) x1 - p exp(-iφS) ) (A.15)

ReU1 ) cos(σ){xB(σ/π) exp(δ) - g1 sin2(σ)
exp(-δ)

xB(σ/π)}
(A.16)

Im U1 ) sin(σ){B(σ/π) exp(2δ) - g1
2 sin2(σ) ×

cos2(σ)
exp(-2δ)

B(σ/π)
+ 2g1 cos2(σ) - g2}1/2

(A.17)

p ) [1 + B(σ/π) exp(2δ) - g2 sin2(σ)]-1 (A.18)

g1 ) 1.8(a2)0.23 exp(-δ) (A.19)

g2 ) 3σ
πδ

ln(1.2+ a2) - 1

a2
(A.20)

B(X) )
2πX2X exp(-2X)

XΓ2(X)
(A.21)

a2 ) p2

2m

F(F1 - F2)

8VX
3

(A.1)

b2 ) (E - EX)
F1 - F2

2FVX
(A.2)

a2 ) xd2 - 1
p2

m(T2
0 - T1

0)2[E2(R0) - E1(R0)]
(A.3)

b2 ) xd2 - 1
2E - [E2(R0) + E1(R0)]

[E2(R0) - E1(R0)]
(A.4)

d2 )
[E2(T1

0) - E1(T1
0)][E2(T2

0) - E1(T2
0)]

[E2(R0) - E1(R0)]
2

(A.5)

EX ) [E1(R0) + E2(R0)]/2 ) E1(T1
0) ) E2(T2

0) (A.6)

SR ) ((1 + U1U2) exp(-2iσ) -U2

-U2 (1 - U1
/U2) exp(2iσ) ) (A.7)

U2 )
U1 - U1

/

1 + |U1|2
(A.8)

P12 ) |S12
R |2 )

4(Im U1)
2

(1 + |U1|2)2
) 4p(1 - p) sin2 ψ (A.9)

ψ ) arg(U1) (A.10)

p ) 1

1 + |U1|2
(A.11)
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where

and

with

and

Now, σ andδ are given:
(a) WhenE g E2(R0),

and

(b) WhenE e E1(R0),

and

(c) WhenE1(R0) < E < E2(R0),

and

2. Nonadiabatic Tunneling Type of Transition. The two
parametersa2 andb2 in terms of diabatic potentials are the same
as eqs A.1 and A.2. In terms of adiabatic potentials, however,
they are differently defined as

and

where

The reduced scattering matrix in terms of the Stokes constant
U1 is given quantum mechanically exactly as

where

It should be noted that the Stokes constants are naturally
different from those in the Landau-Zener type of transition.Rt

andEt (Rb andEb) represent the position and energy of the top
(bottom) of the lower (upper) adiabatic potential (see Figure
18). The suffixes 1 and 2 of theS matrix designate not the
adiabatic potential, but the regions in coordinate space with
respect to the potential crossing. Namely, the off-diagonal
elementS12 represents the transmission through the crossing
region. When the adiabatic potentials are symmetric around the
crossing point andRt ) Rb is satisfied,γ becoms unity and the
appropriate limit should be taken to define the parametera2,
which gives

The semiclassical expressions in the Zhu-Nakamura theory are
given below for the Stokes constant and other important physical
quantities.

2.1. Case A: Eg Eb. The Stokes cosntantU1 is given by

where the nonadiabatic transition probabilityp for one-passage
of the crossing point and the phaseψ are defined as

and

δψ ) δ(1 + 5a1/2

a1/2 + 0.8
10-σ) (A.22)

σ0 + iδ0≡ ∫R0

R*[K1(R) - K2(R)] dR =
x2π
4a

F-
c + iF+

c

F+
2 + F-

2

(A.23)

F( ) xx(b2 + γ1)
2 + γ2 ( (b2 + γ1) +

xx(b2 - γ1)
2 + γ2 ( (b2 - γ1) (A.24)

F+
c ) F+[b2 f (b2 - bc

2)] (A.25)

F-
c ) F-(γ2 f γ′2) (A.26)

γ1 ) 0.9xd2 - 1 (A.27)

γ2 ) 7
16

xd2 (A.28)

bc
2 )

0.16bx

x1 + b4
(A.29)

γ′2 ) 0.45xd2

1 + 1.5 exp(2.2bx|bx|0.57)
(A.30)

bx ) b2 - 0.9553 (A.31)

σ ) ∫T1

R0K1(R) dR - ∫T2

R0K2(R) dR + σ0 (A.32)

δ ) δ0 (A.33)

σ ) σ0 (A.34)

δ ) -∫R0

T1|K1(R)| dR +∫R0

T2| K2(R)| dR + δ0 (A.35)

σ )∫T1

R0K1(R) dR + σ0 (A.36)

δ ) ∫R0

T2K2(R) dR + δ0 (A.37)

a2 )
(1 - γ2)p2

m(Rb - Rt)
2(Eb - Et)

(A.38)

b2 )
2E - (Eb + Et)

Eb - Et
(A.39)

γ )
Eb - Et

E2(Rb + Rt

2 ) - E1(Rb + Rt

2 )
(A.40)

SR ) 1
1 + U1U2

(exp(i∆11) U2 exp(i∆12)
U2 exp(i∆12) exp(i∆22) ) (A.41)

U2 )
U1 - U1

/

|U1|2 - 1
(A.42)

a2 ) p2

4m(Eb - Et)
2[∂2E2(R)

∂R2 |
R)Rb

-
∂

2E1(R)

∂R2 |
R)Rt

] (A.43)

U1 ) ix1 - p exp(iψ) (A.44)

p ) exp[- π
4a( 2

b2 + xb4 - 0.72+ 0.62a1.43) (A.45)

ψ ) σ - φS ) σ + δ
π

- δ
π

ln(δπ) + argΓ(iδπ) + π
4

- g7

(A.46)
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with

and

The phases appearing in the definition ofS matrix are given as

with

T2
r andT2

l are the turning points onE2(R) (see Figure 18). The
nonadiabatic transition amplitude to connect the wave functions
between the right and the left sides of the crossing point is given
by

The overall transmission probability from the left to the right
or vice versa is given by

2.2. Case B: Eb g E g Et. The Stokes constantU1 is given
by

with

and

where

and

The phases appearing in the definition ofS matrix are defined
as

and

Figure 18. Schematic adiabatic potentials and various parameters used in the ZN formulas for (a) Landau-Zener case and (b) nonadiabatic
tunneling case.

U1 ) i[x1 + W2 exp(iφ) - 1]/W (A.56)

W )
1 + g5

a2/3 ∫0

∞
cos[t33 - b2

a2/3
t -

g4

a2/3

t

0.61x2 + b2 + a1/3t] dt

(A.57)

φ ) σ + argΓ(1/2 + iδ/π) - δ
π

ln(δπ) + δ
π

- g3 (A.58)

σ ) -
(1 - b2)x5 + 3b2

xa2 [0.057(1+ b2)0.25 + 1
3] (A.59)

δ )
(1 + b2)x5 - 3b2

xa2 [0.057(1- b2)0.25 + 1
3] (A.60)

g3 )
0.34a0.7(a0.7 + 0.35)(0.42+ b2)

a2.1 + 0.73 (2 + 100b2

100+ a2)0.25

(A.61)

g4 )
xa2 - 3b2

xa2 + 3
x1.23+ b2 (A.62)

g5 ) 0.38(1+ b2)1.2-0.4b2
/a2 (A.63)

∆11 ) σ - 2σ0 (A.64)

∆22 ) σ + 2σ0 (A.65)

∆12 ) σ (A.66)

σ ) ∫T2
l

T2
r

K2(R) dR (A.47)

δ ) π
16ab

x6 + 10x1 - b-4

1 + x1 - b-4
(A.48)

g7 ) 0.23a1/2

a1/2 + 0.75
40-σ (A.49)

∆11 ) 2∫T2
l

RbK2(R) dR - 2σ0 (A.50)

∆22 ) 2∫Rb

T2
r

K2(R) dR + 2σ0 (A.51)

∆12 ) σ (A.52)

σ0 )
Rb - Rt

2 [K1(Rt) + K2(Rb) +
[K1(Rt) - K2(Rb)]

2

3[K1(Rt) + K2(Rb)]]
(A.53)

IX ) (x1 - p exp(iφS) xp exp(iσ0)

-xp exp(-iσ0) x1 - p exp(-iφS) ) (A.54)

P12 )
4 cos2(ψ)

4 cos2(ψ) + p2/(1 - p)
(A.55)
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The overall transmission probability takes the form

2.3. Case C: Ee Et. The Stokes constantU1 is given by

and

where

and

T1
r andT1

l are the turning points onE1(R) (see Figure 18). The
phase appearing in the definition ofS matrix are

In this energy region physically meaningful quantities are the
overall transmission and reflection probabilities. The transmis-
sion probability is given by

This expression contains both effects of quantum mechanical
tunneling (exp[-2δ] is the Gamov factor) and nonadiabatic
transition, which is represented by the factorσc. This transmis-
sion probability is always smaller than the ordinary tunneling
probability through the lower adiabatic potential with the
nonadiabatic coupling effect neglected. When the diabatic
coupling is infinitely strong, namely,a2 f 0, the above
transmission probability goes to the ordinary potential penetra-
tion probability) exp(-2δ)/[1 + exp(-2δ)].
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