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Dynamics of Nonadiabatic Chemical Reactions

Hiroki Nakamura
Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8585, Japan

Receied: June 12, 2006; In Final Form: July 14, 2006

New methods are proposed to treat nonadiabatic chemical dynamics in realistic large molecular systems by
using the Zhu-Nakamura (ZN) theory of curve-crossing problems. They include the incorporation of the ZN
formulas into the HermanKIluk type semiclassical wave packet propagation method and the trajectory surface
hopping (TSH) method, formulation of the nonadiabatic transition state theory, and its application to the
electron transfer problem. Because the nonadiabtic coupling is a vector in multidimensional space, the one-
dimensional ZN theory works all right. Even the classically forbidden transitions can be correctly treated by
the ZN formulas. In the case of electron transfer, a new formula that can improve the celebrated Marcus
theory in the case of normal regime is obtained so that it can work nicely in the intermediate and strong
electronic coupling regimes. All these formulations mentioned above are demonstrated to work well in
comparison with the exact quantum mechanical numerical solutions and are expected to be applicable to
large systems that cannot be treated quantum mechanically numerically exactly. To take into account another
quantum mechanical effect, namely, the tunneling effect, an efficient method to detect caustics from which
tunneling trajectories emanate is proposed. All the works reported here are the results of recent activities
carried out in the author’s research group. Finally, the whole set of ZN formulas is presented in Appendix.

I. Introduction tion in multidimensional space, the one-dimensional ZN theory
can be usefully utilized. Besides, the comprehension of reaction
mechanisms can be enhanced by using the theory, because the

oll recoanized in some occasiohé A nonadiabatic transition formulas are given in simple analytical expressions. Considering
w gnized | lons. ! : ” the nonfeasibility of full quantum mechanical numerical simula-

presents a very basic mechanism not only to comprehend varioustions of realistic large systems, it would be appropriate to

dynamic processes occurring in nature but also to manifest new. : . - !
i ; ~_incorporate the theory into some kind of semiclassical methods.
molecular functions in nanospace and to control dynamic

processes by applying an external field. Theory of nonadiabatic ;h?e‘;fnrgﬁg?;gmg%ﬁﬁg'@ trr:a e]}rr;ogi gr: 25)5';?16 'rg't'zl ;/?cl)l;e
transition can play important roles to accomplish these studies. pth @426 Th th ("d) h z b ud ! Ip g ? Ith
A complete set of analytical formulas for the curve-crossing methoax: ese methods have been developed for the

problem derived by Zhu and Nakamura (ZHakamura (ZN) adiabatic processes, namely, for the dynamics on a single
theory}29-13 is actually useful for these studies. adiabatic potential energy surface. Incorporation of the ZN theoy

For the creation of new molecular functions. for instance. C&" extend the methods so as to treat electronically nonadiabatic
the intriguing phenomenon of complete reflection found in the d_ynaml_cs beyond the perturpanve treatmiéAtA mu_ch simpler
nonadiabatic tunneling type of transition in which the two simulation method is the trajectory surface hopping (T3Hj.

diabatic potential curves cross with opposite signs of slopes may-tl;hIS IS a clssswal trajector yl method with felectronlc traénsbltlonhs
play important roles*!5 As for the control of chemical etween the two potential energy suriaces treated by the

dynamics, nonadiabatic transitions created by an external field -@ndau-Zener formula or by solving the time-dependent
like laser can be manipulated by appropriately designing the goupled gquatlons. After these onglnal works many mod|f|ca-
field parameters so that the desirable products can be efficientlytions and improvements have been introd@&tand the widely
produced-22 These subjects, i.e., manifestation of molecular  SPréad applications have been made because of the simfietty.
functions and control of chemical dynamics, are not discussed However, some crucial problems have been left unsolved such
in this Feature Article. This Feature Article describes a summary @ how to deal with the classically forbidden nonadiabatic
of the recent activities done in the author's research group transitions and how to define classical trajectories uniquely.
concerning the first subject mentioned above, namely, the These defects can be removed by using the ZN theory in the
comprehension of nonadiabatic chemical reaction dynamics. adiabaticstate representation.

The ZN theory can be incorporated into various simulation ~ The ZN formulas can also be utilized to formulate a theory
methods to treat realistic molecular systems. Because thefor the direct evaluation of the thermal rate constant of
nonadiabatic coupling is a vector and thus we can always electronically nonadiabatic chemical reactions based on the idea
determine the relevant one-dimensional direction of the transi- of transition state theor$?. This formulation can be further
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Without doubt nonadiabatic dynamics play crucial roles in
physics, chemistry and biology, even if this fact is not explicitly
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utilized to formulate a theory of electron transfer and an
improvement of the celebrated Marcus formula can be déne.

Needless to say, multidimensional tunneling is another
important quantum mechanical effect that should also be
incorporated into simulations such as those mentioned above
To do that, the so-called caustics, which are nothing but turning
points in the case of an ordinary one-dimensional system and
from which tunneling trajectories emanate, should be properly
detected along classical trajectories. An efficient method to do
this has recently been devised by Oloyede &t dlhis can be
done by solving the first-order Riccati type time-dependent
differential equation along trajectories and the method can be
incorporated into the above-mentioned simulation methods.

This paper is organized as follows. Incorporation of the ZN
formulas into the semiclassical frozen Gaussian wave packet
propagation method and the TSH method will be described in
sections Il and 111, respectively. Some numerical examples will
be presented. The theory of nonadiabatic thermal rate constan
and its application to electron transfer will be discussed in
section V. Finally, the detection of caustics will be explained
in section V together with some numerical demonstrations.
Section VI concludes the paper.

II. Semiclassical Herman—Kluk Type Frozen Gaussian
Wave Packet Propagation Method

As mentioned above, full quantum mechanical treatments are
limited only to low dimensional systems and it is desirable to
develop effective semiclassical theories with nonadiabatic

Nakamura
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Figure 1. Two basic elements of dynamics: (i) propagation on a single
potential and (ii) nonadiabatic transition. In the classically allowed case,
the nonadiabatic transition occursXata. In the classically forbidden
case, the transition region spans the interxalx), wherex and x
correspond to the turning points.

for single surface propagati#nand the ZN theory for non-

adiabatic transition. The nonadiabatic transition amplitude of

the ZN theory properly provides also the so-called dynamical
phases induced by the nonadiabatic transition and can be
incorporated into each frozen Gaussian wave packet by expand-
ing the latter in terms of energy normalized eigenstates.

Here only the outline of the formulation is described so that
the reader can grasp the essential ideas of the method. The
details of the formulation can be found in the original pajgéps.

The total wave function at timein the Hermanr-Kluk approach
is expressed as

dq, dp,
27" 9(r;0uPYCq pt X

eXp[lslo,po,t]fdro g*(r :do:Po) ¥(rp,t=0) (1)

YD) = [oar
t

wherey(ro,t=0) andy(r,t) are the wave functions at time zero
andt, respectively,N is the dimensionality of configuration
space,Sy,pot IS the classical action along the trajectory from
(0o,po,t=0) to (@,Pt,t), andCqqp,t is the Hermar-Kluk preex-
ponential factor along the trajectof§The frozen Gaussian wave
packes are defined as

o0 = (2" el —a +ip —a) @

transitions incorporated. In the adiabatic state representation a

whole chemical process can be divided into the following two

steps (see Figure 1): (i) motion on a single adiabatic potential
energy surface up to the region of nonadiabatic transition and
(ii) nonadiabatic transition at the potential surface crossing. As

wherey is a constant parameter common for all wave packets.
The above expression fap(r,t) is explained as follows: the
initial wave function is expanded in terms of the frozen Gaussian
wave packets and each packet is propagated by classical

mentioned above, there are two types of semiclassical pathmechanics with its shape kept fixed. The final wave function is

integral methods for the propagation on a single potential energy
surface. One is the initial value representation theory with use
of classical trajectories devised by Miller and oth&r#n this
case the nonadiabatic transition amplitude of the ZN theory can
be directly incorporated into the framework. The other is the
frozen Gaussian wave packet propagation me#io. The
Herman-Kluk propagator combined with the cellularization
procedure works well, giving good agreement with full quantum
calculationg>26 The semiclassical approach explained in this
section makes use of the advantages of the Herriark theory

expressed as a sum of thus propagated frozen wave packets
multiplied by the factoiCqy,p,t €XP[iSyp.d- The initial param-
eters (o, po) Of trajectories are selected by the well-established
Monte Carlo procedure. This propagation is made on a single
adiabatic potential energy surface and is carried out up to the
region of potential energy surface crossing. It is assumed that
the nonadiabatic transition occurs locally and instantaneously
at the positiorg; where the adiabatic potential energy difference
becomes minimum along the trajectory. Once this transition
position is found, the nonadiabatic transition is taken into
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Landau-Zener type where {¢'(E,r)} are the energy eigenfunctions in the final
{[—= Fopping is classically allowed | %(R) electronic statd. '_rhe functiongf(r) is expanded in terms of
1| ====» Hopping is classically forbidden the frozen Gaussian wave packeis ;qr,pr) of the same shape
> as before and the expansion coefficieRtsare given by
> ]
? ] f
L] Fi(dePea.P) = fdr Gi(ridePe) ¢'(r dePeaP) (6)
=a
2 ] whereqr andpg are the position and momentum right after the
o transition. The positiorgr is not necessarily the same ag
] because in the case of classically forbidden transition when the
L I A A energyE is lower than the crossing point, the positiapsand
a) Coordinate R gr are turning points on the respective potential energy curve
) ) ) and are different from each other. The frozen Gaussian wave
Nonadiabatic Tunneling type packetg(r;qr,pr) are further propagated on the potential energy
] — Hopping is classically allowed surface f. Then the final wave function at tinteafter the
] ====% Hopping is classically forbidden transition is expressed as
g & 3 d dg d
o ! in
2 noptr Y,(R) _ QoPo Qe 0P
& Pt ) = [ ; Ir(r;duP)Cq,p,t X
5 | f ftra](zn)N traj (2.77:)N F UMY ~gEpet
% i expli§,_p dFi(ArPraLP)Cy pyts X
o .
] expliSy p, 1]/ o G ( 6:00:Pe) ¥i(ot=0) (7)
b) Coordinate R wheretya represents the time of nonadiabatic transition and (

Figure 2. Interpretation of the mode: reflection, passing and hopping. Pt) @ré the coordinate and mometum at titraf the trajectory
Vi(R) andV(R) represent adiabatic potentials. Reprinted with permis- started from g, pg). In the actual computations the integrals
sion from ref 27. Copyright 2004 American Institute of Physics. with respect tayr andpg are replaced by the sum of the main
components of the wave packets right after the transtfich.
account as follows. The local separability in the vicinitycpf The analysis of the functiof(gr,pr,qi,p1)| indicates that the
is assumed and the one-dimensional direction of transition is main components can be found from the general principle of
determined. If the nonadiabatic coupling vector is available, the nonadiabatic transition in the one-dimensional system.
one-dimensional cut is made along that direction. If it is not ~ Numerical examples are shown in Figures 3 aré Bhis is
available, we can determine the direction from the Hessian a two-dimensional KD model system in a continuous wave
there®® If the geometry of the potential energy surface-crossing (CW) laser field of wavelength 300 nm (about 4.1 eV). The
seam is known in advance, we can take the direction perpen-laser intensity is 18 W/cm2. The bending and rotational
dicular to the seam surface. By using one of these methods, wemotions are neglected with the bending angle fixed at the
can reduce the problem to the one-dimensional one and applyequilibrium position, i.e., 104.52The potential enegy surfaces

the .ZN theory. _ . of the ground and first excited states and the transition dipole
First, the frozen Gaussian wave packets just before the moment are the same as thoseé®nnitial wave packet is a
transition on the initial adiabatic surfaceare expanded as symmetric Gaussian of the full width at half-maximum 0.5 au
centered aR = (5.0 au, 3.0 ad)on the upper adiabatic potential
a,(r;q,.p,.t) = de ai(E) ¢i(E,r) (3) energy surface. Because the Flogquet or dressed-state representa-

tion is used, the upper adiabatic state corresponds to the dressed
groundstate and the process mimics the photodissociation. The
mean momentum of the initial wave packet is zero. Figure 3
shows the two potential energy surfaces, and Figure 4 presents
a comparison between the present semiclassical resutls (Figure
4b,d) and the exact quantum mechanical numerical solutions
(Figure 4a,c). The semiclassical method works well. The final

. . . population on the excited state, namely the photodissociation
where f and m specify .the final electronic state and the mode probability, is 29% in the semiclassical approximation in
on that state, respectively. The mode specifies one of the comparison with 35% of the excat quantum result. The
following three:reflection, passing, or hopping (see Figure 2). nronagation period and the number of trajectories used are 20

Namely, the coefficienTy' represents the transition amplitude fs and 7000, respectively.

for the reflection or passing on the same adiabatic potential A method similar to that mentioned above can be applied to
energy surface as the initial ones=fi, or hopping to the other 556y control of chemical dynamics. We have recently formulated
potential energy surfacez i, after the transition, and is directly 5 semiclassical optimal control theory based on the gradient

where{¢/(E,r)} are the energy normalized eigenfunctions in
the electronic staté at g ~ q;. Right after the transition the
coefficienta!(E) changes to

of (E) = Tio'(E) (4)

given by the ZN formqlasfinclqding dynamical phases. search methdd in which the time correlation function com-
_The final wave functiorp'(r) right after the transition is thus posed of the forward and backward time-dependent wave
given by functions is the basic quantity to be evaluat&é? This
semiclassical theory can now deal with realistic systems with
o' = Z f dE of (E) ¢'(E,r) (5) more than three degrees of freed8ithat cannot be teated by
m the full quantum optimal control theo®§.Here we do not go
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Figure 3. Two-dimensionalmodel potentials of,8 in the dressed state picture. The upper adiabatic potential is thus the dressed ground state.
Reprinted with permission from ref 21. Copyright 2005 World Scientific Publishing Co.
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Figure 4. Final wave packets after photodissociation. (a) and (c): quantum mechanical numerical solutions of coupled Schroedinger equations. (b)

and (d): corresponding semiclassical results. (a) and (b): on the ground state. (c) and (d): on the excited state. Reprinted with permission from ref
21. Copyright 2005 World Scientific Publishing Co.

into the details about this and the reader should refer to the still remain, however, some crucial problems related to (i)

above references. definition of classical trajectory, (ii) localizability of the
transition, (iii) energy and angular momentum conservation, and
Ill. Generalized Trajectory Surface Hopping Method (iv) treatment of classically forbidden transition in which the

energy is lower than the energy at surface-crossing point. In
traiect ? hopoing (TSH thod intreduced by Bi the adiabaticstate representation, a classical trajectory runs on
rajectory surface hopping ( ) method introduced by Bierre a single adiabatic potential energy surface until it reaches the

and Nikitir® and by Tully and Prestot?,in which classical X . . ) g
- . - - surface-crossing region and the nonadiabatic transition can be
trajectories hop at the potential energy surface crossing accord-

ing to the nonadiabatic transition probability evaluated by the ?ssurlneq[r:o $ccur dlocall;(/jth(:re. |n|th(IjS casetllt IS ':Ot C(i.n ve:]el[r;]t
Landau-Zener formula or the solution of time-dependent '© SO'VE h€lime-dependent coupled equations to estimate the

coupled equations. At each occasion a random number istransitic_)n probability. Th_e tirr_1e-d_epen_dent coupled equ_ations
generated and the nonadiabatic surface hopping is made, if thefOnvenient to solve are given in th@baticstate representation,
calculated probability is larger than the random number (anteaterin Which the localizability of the transition cannot hold well
procedure). Because of its simplicity the method is applicable and the unique definition of classical trajectory becoms ques-
to large systems and has enjoyed widespread applicéfotfs.  tionable. If one uses the Landadener formula in thediabatic
Various modifications from the original version have been made representation, these problems are not very serious; but the
especially by Tully and by Truhlar and co-workéfs! There Landau-Zener formula does not work well when the energy is

The simplest method to treat nonadiabatic dynamics is the



Feature Article J. Phys. Chem. A, Vol. 110, No. 38, 20080933

I I T I |

DB [

Total non-reactive s BT

1.0 [~

CUMULATIVE PROBABILITY

0.5 |-

2.0 2.1 2.2 2.3 2.4 2.5

TOTAL ENERGY(eV)

Figure 5. Total cumulative charge-transfer probabilities for H Dt — H," + D. Dashed line: exact quantum mechanical numerical solution.
Solid line: TSH results with use of the ZhiNakamura formulas. Dastdot line: TSH results with use of the Landadener formula. Reprinted
with permissino from ref 43. Copyright 2001 American Institute of Physics.
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Figure 6. Initial vibrational state specified cumulative reaction probabilitiesfer 2. Dashed line: exact quantum mechanical numerical solution.
Solid line: TSH results with use of the ZkiNakamura formulas. Dastdot line: TSH results with use of the Landadener formula. Reprinted
with permission from ref 43. Copyright 2002 American Institute of Physics.

close to the surface-crossing energy. The most serious problenof the classically forbidden transitions has been clearly dem-
is that the classically forbidden transitions cannot be treated by onstrated. The LandatZener formula gives a bit too small
any one of these methods. It is well-known that the Lardau results even at high energies. It was found that in multidimen-
Zener formula cannot treat those transitions, but even the sional systems classically forbidden transitions play relatively
solutions of the time-dependent coupled equations and themore important roles than in the case of one-dimension because
widely used fewest switches method of Tdflgannot properly of energy transfer among many degrees of freedom. Some of
take into accout those classically forbidden transitions. the results are shown in Figures 5 and 6. The quantum results
If we employ the ZN formulas in theadiabatic state show violent oscillations which are resonances due to the
representation, all the problems mentioned above can be solvedpotential well of the ground state. In the TSH calculations all
Because the localizability holds well, classical trajectories can the long lived trajectories are killed, because we are not
run on a single adaiabatic potential energy surface and thus theinterested in resonances here. This reaction system is, however,
effects of relaxation can be taken into account easily. We have a relatively simple one, because the surface-crossing seam exists
first applied the ZN formulas to the D#fi system and a bit away from the reaction zone, only the Land&iener type
demonstrated that the method works well in comparison with of crossing in which the two diabatic potential curves have the
the exact quantum mechanical numerical solutfShsiportance same sign of slopes appears, and the geometry of the seam
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Figure 7. Adiabatic potential energy surfaces for the DIM model of

CH; at the HCH angle fixed at 120Reprinted with permission from
ref 39. Copyright 2006 American Institute of Physics.

Nakamura

dimensional cut of the potential energy surfaces is made, (iii)
judgment is made whether the transition is LandZener type

or nonadiabatic tunneling type, and (iv) the transition probability
is calculated by the appropriate ZN formula. The transition
position can be simply found by detecting the minimum energy
separation between the two adiabatic potential energies. The
determination of transition direction has the following options
as mentioned in the previous section: (a) direction perpendicular
to the seam surface, if the latter can be well defined in advance;
(b) direction of the nonadiabatic coupling vector, if it is
available; (c) direction estimated from the Hessian. If the seam
surface is known well, method a is the best, because the
nonadiabatic transition in the direction parallel to the seam
surface is the so called Rosedener type and can usually be
neglected. In general, however, the geometry of the seam surface
cannot be known in advance. The second best in that case is
the direction of the nonadaiabtic coupling vector. However, the
vector is not necessarily available, in general, unfortunately. In

surface can be well defined. Recently, we have generalized thissuch a case, the last choice is to take the direction of the

method so that it can be applied to any general large systems.
The method is composed of the following algorithms: (i)

eigenvector of the only nonzero eigenvalue of the rank one
Hessian matrix of the difference between the two adiabatic

the transition position is detected along each classical trajectory,potential energy surfacé8ln the case of classically forbidden

(ii) the direction of transition is determined there and the one-
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Figure 8. Initial rovibrational state specified reaction probabilities. Solid line: exact quantum mechanical numerical solution. Solid line with solid
square: generalized TSH with use of nonadiabatic coupling vector. Solid line with open circle: generalized TSH with use of Hessian. Reprinted
with permission from ref 39. Serl(2) in the figure means the ground (excited) potential energy surface. Copyright 2006 American Institute of

Physics.
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are coupled; i.e., they cannot be treated separately. Besides, théleaviside step function, arfdl= (i/h)[H,h] is the flux operator
transitions are not vertical anymore. The ZN formulas properly through the dividing surface defined &Q) = 0, with Q
describe the nonvertical transitions and provide the overall denoting the set of mass reduced Cartesian coordinates. With
transition probability. The position right after the transition is use of the dividing surfac&Q) = 0 the flux operatoF can be
not equal anymore to the position before the transition. The expressed as
total angular momentum conservation apparently violated by
the nonvertical transition can be recovered by appropriately F=P'VYQ) 0[SQ)] (9)
rotating the system. The detailed recipe is not described here ) )
but can be found in ref 39. The energy conservation is not a WherePT is the transposed momentum vector. Replacing the
problem at all, because the classically forbidden transitions are time-dependent Heaviside function by its classical analogue and
treated properly and the total energy after the transitions is the quantum mechanical trace by the phase space integration,
conserved. we have

This generalized TSH (ZN-TSH) has been applied to a model 1
triatomic system mimicking Ci which has a conical intersec-  kz, = — ['dP dQ exp(~BH)P'V(Q) 6[S(Q)] P[E,S(Q)]
tion, and both LandauZener and nonadiabatic tunneling types h (10)
of transitions appedf. The ground and excited potential energy

surfaces are constructed by using the DIM (diatomics in whereE; is the translational energy component perpendicular
molecule) method (see Figure 7). The numerical results in to the seam surface and the classical Heaviside function is
comparison with the excat quantum mechanical numerical yeplaced by the ZN nonadiabatic tunneling probab(i,) at
results are again resonances due to the attractive well in theg|| the components of momentum except fey which is the
ground State. Apart from these OSCi"atiOnS the ZN'TSH WOI’kS Component norma' to the seam Surface and |ntroduc|ng the

acceptably well. In these figures the two ZN-TSH resuilts are guantum mechanical corrections to the partition functions, we
compared with respect to the choice of the transition direction: fina|ly obtain

(i) the direct use of nonadiabatic coupling vector and (ii) the

Hesssian approximation. It is clearly seen that the Hessian + _
approximation works well. These successful demonstrations k:é /1 fdQ PB.Q)IVIQ)OISQ)] expl-AVIQ)]
ZIN 27p [dQ S[S(Q)] expl—AV(Q)]

confirm the potentiality of applying the present method to

general large systems of general potential energy surface
topology. With the present method the very popular classical
mechanical MD (molecular dynamics) simulation method could Wherezg and Z% are the quantum mechanical partition func-

be easily improved and extended so as to take into account thejons of activated complex and reactants, respectively. The

nonadiabatic transitions properly. Finally, it would be worth- effective coordinate-dependent transmission probatfiigQ)
while to mention that another important quantum mechanical js defined by

effect, namely, quantum mechanical tunneling, can also be taken
into account in the present methodology. To do that, it is crucial =) =8 ["dE.exp(—BIE. — Vi = 12
to detect caustics (turning points in one-dimensional case) along @Q) ﬁj(‘) < expCALES (QDPEQ) (12)
trajectories. This can be easily done, as will be explained later

. - The above formula has been tested by using the model collinear
in section 5.

reaction described by the following diabatic potentiéls:

IV. Semiclassical Theory of Nonadiabatic Thermal Rate

_ _ - _ 2
Constant and Electron Transfer Vi(r,R) = D(1 — exp[=A(r — ro])" +

2
Another interesting subject is the direct evaluation of thermal %D(l + exp{—ﬁ(R + %r — re)]) — %D (13)
rate constants for electronically nonadiabatic chemical reactions.
“Direct” means not from the detailed scattering matrix calcula- 1 2
tions, as has been well discussed by Miller and co-workers for Vo(I,R) = D(l - exp{—ﬁ(R - Er - re)l) +
the single surface adiabatic proces§&8.Extending the trace 1 1 2 1
formula by Miller, we have formulated the thermal rate constant ED(l + exp{—ﬁ(R + Er - re)]) - §D (14)

for nonadiabatic reactions with use of the ZfJdakamura

formulas3>46In the simple case that the transition state is created _ e N2 Y
by the nonadiabatic tunneling type surface crossing, we have Ve(rR) =AexpCy[(r —r)"+(R-R)T)  (15)
derived a simple formula by explicitly considering the geometry
of crossing seam surface and the coordinate-dependent non- 4 the parameters used @e= 4.9 eV, § = 1.877 A, ro =

adiabatic transition probability on th#t.The formula was 0.7417 Are = 1.5707 AR, = 1.5y = 0.01 A2 andA =

demonstrated to work well in the case of one- and two- . . .
dimensional model systems and is expected to be applicable toO.l eV. Figure 9 shows the contour plot of the adiabatic ground

. ; - - .~ “state in the mass reduced coordinates.
high dimensional systems with use of the Monte Carlo sampling . . .
method. Figure 10 shows the Arrhenius plot of the numerical results

. . . of the thermal rate constants. The solid circles are the exact
We start with the rigorous guantum mechanical rate contant uantum mechanical numerical solutions. The thick solid line
in terms of the flux-flux correlation functiorft’ q : .
represents the results of the present formulation, namely the
results of eq 11. The thin solid line is the result of using the
classical partition function instead of using the proper quantum
one. ltis clearly seen that the quantum correction of the partition
where Z; is the partition function of the reactarh, is the function is important. The dashed lines are the results of the

whereV; is the diabatic coupling between the two potentials

kz = 1[1; Trlexp(—pH)F exp(Ht/A)h exp(—iHt/A)] (8)
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150 treatments. It is natural to think about incorporation of the ZN
formulas into the theories of electron transfer. The first step to
do this is to reformulate the famous Marcus formula under the
assumption of thermally activated process with the fast dielectric
relaxation. This was done in ref 36. Here, we consider only the
so-called normal case that corresponds to the nonadiabatic
tunneling type of potential crossing and present only the essential
portion of the formulation together with some numerical results.
We can start from eq 11. Because the electron-transfer rate is
described in the representation of free energy, we introduce the
free energy by

100

r(a.u.)

50

& il TS0 il

| Ra) exp=AF,(8)] = [dQ exp[-AV,(QIIVSQ)I(E-S(Q)
Figure 9. Contour plot of the ground adiabatic potential energy surface (16)
for the 2D model. The dash line represnts the seam surface. Reprinted

\Igvgcsﬁzesrmlssmn from ref 35. Copyright 2004 American Institute of and rewrite the thermal rate constant as

T
- = ;;zc.‘l« [ 555P (3.2 fd o6& expl-pF,&)] (07

—~ el |

k(T) (cm molecule " s

whereZ is the denominator in eq 11 and the average transition
probability P(5,£) is defined by

JdQ exp[=AVy(QIVSIQ)I0(E-S(Q)) P(8,Q)
JdQ exp[-BVAQIVIIQ)I6(E-S(Q) a8)

le-20 F

le-25 F

P(B.&) =

le-30 F

0 JJ 3 4
1000/7(k) In the linear response limit, the free enerdig@) (j = 1, 2) of

Figure 10. Arrhenius plot of the thermal rate constants for the 2D the donor and acceptor can be expressed by parabolic functions
model. Solid circle: exact quantum mechanical numerical solution. of £ g5

Thick solid line: present nonadiabatic TST. Thick dashed line: present

nonadiabatic TST with use of the minimum energy crossing point 1

(MECP) approximation. Thin solid line: present nonadiabatic TST F(§) = — B |n[fdQ exp[=AV1(Q)]IVIQ)6(E—SQ))] =
without the quantum mechanical correction to the partition function.

Thin dashed line: present nonadiabatic TST with use of MECP without 1'(1)2(5 - & 1)2 (19)

the quantum mechanical correction to the partition function. Reprinted 2 0

with permission from ref 35. Copyright 2004 American Institute of

Physics. Fy(8) = — % In[.{ dQ exp[-AV,(Q)]I VSQ)IO(E-SQ)] =

conventional transition state approximation in which the trans-
mission probability is calculated only at the minimum energy
crossing point (MECP) and its coordinate dependence is N o
neglected. The thin (thick) dashed line corresponds to the resultswhere&o; and o are the positions of the free energy minima
using the classical (quantum) partition function. These test of donor and acceptor, respectively, an@ represents the
calculations clearly demonstrate that the present formulation exothermicity of the reaction which is determined from eq 20.
gives correct estimates, if the coordinate-dependent nonadiabatic From the above equations we can finally obtain
tunneling transition probability and the quantum mechanical k= ik, 21)
correction of the partition function are properly taken into arcus
account.
. . . . with
The present treatment is quite a simple one and the following
two generalizations are naturally required: (i) applications to _
2 ) . - _ ho A
multidimensional complicated molecular systems, and (ii) K= > ﬂ—ﬁp(ﬂ,éo)
formulation applicable to a more general case that the ordinary 21Hpp
transition state and the potential surface crossing are separated. h is the M f la defined b
The former may be done without difficulty by using the well- Wher€Kuareusis the Marcus formula defined by
established Monte Carlo technique. The latter case requires a Ho2 _8(+ AG)
somewhat new formulation and now is in progréss. _ Ao f7f _ M
; ; ; ; kMarcus ex (23)
Electron transfer, which is a very important process in h A 4
chemistry and biolog§?-*°can be a nice subject to be treated
by the present theory. Not only in the original Marcus theory
but also in the conventional treatments of electron transfer is
the electronic coupling dealt with by the perturbation theory or 1
i A= 0G0 — &)’ (24)
by the Landat-Zener formula. Now we know that the inter- 2% S0z 01)
mediate to strong diabatic coupling cases and the classically
forbidden transitions cannot be properly described by these The effects of nonadiabatic transition and tunneling are

%wz(é — &%+ AG (20)

(22)

andHap is the electronic coupling between acceptor and donor.
The reorganization energyis defined by
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Figure 11. Arrhenius plot of the electron-transfer rate-ai, = 0.0001
au. Solid line: Bixon-Jortner perturbation theory. Full circle: present Figure 12. Electron-transfer rate against the electronic coupling
result. Dashed line: Marcus’ high temperature theory. Reprinted from strength afl = 500 K. Solid line with circle (square): present results
ref 36. without (with) the MECP approximation. Dashed line: Bixedortner
theory. Dotted line: Marcus' high temperature theory. Reprinted from

D.I]T]E [|.[l]| 0.015
Coupling Strength (a.u.)

properly taken into account yand the main task is to evaluate  ref 36.
the average transition probabili®(3, &) in which the non-

adiabatic tunneling probability?(Es,Q) on the seam surface

given by the ZN formula plays the essential role (see eqs 18

and 12). It should also be noted that the electronic coupling

Hap is assumed to be constant in the Marcus formula, but this levl?
is not necessary in the present formulation. The couptpg
cancels out ink of eq 21 and the ZN probability can be
calculated from the information of adiabatic potentials (see
Appendix).

The above formulation can be directly applied to multidi- le+08
mensional systems and its numerical results for the system of
twelve harmonic oscillators are shown below. The model
potentials used are

le+ld | 1

ate (s

& le+l0

1 1
0.005 0ol
Coupling Strength ( a.u.)

Figure 13. Electron-transfer rate against electronic coupling strength

112 atT = 500 K in the symmetric potential case. Solid line: present full
V, == w-ZQZ (25) dimensional result. Dashed line: present result in the effective one-
1 2}; 1= dimensional model. Reprinted from ref 36.
2

V. _}l 2~ 2 26 is assumed to be constant. As mentioned before, the MECP
27 ZZC"J‘ (@~ Qq) (26) approximation is considered not to be good enough in general.
= It should also be noted that the present theory works all right
where the exothermicityAG is taken to be zero and the in the case of general asymmetric potentfilsecause the ZN

parametersy; and the reorganization energigs= (0;Qq)%/2 formulas are valid for general curve-crossing problems.

are as follows: It would be very useful and convenient for the interpretation
of experimental data, if we can introduce a certain effective

o, (j=1-12) (em?b = one-dimensional model for a collection of harmonic oscillators.

462, 511, 584, 602, 628, 677, 1007, 1169, 1252, 1334, 1403, 1548Actually, this can be done to a good extent by using the method
proposed by Dogonadze and Urushatiz&he effective one-

A (=1-12) (cm ) = dimensional frequency is defined as
3038, 1372, 775, 1039, 2125, 1196, 269, 638, 351, 625, 275, 100
1
The reaction coordinaté is defined as = Vi — V, and thus w’= Ezwjz/lj (27)
]

the seam surface corresponds §o= &, = 0. The actual
computations are carried out by using the Monte Carlo method.

The results are shown in Figures 11 and 12. The corresponding potentials are given by
Figure 11 shows the Arrhenius plot of the rate for the weak 1
electronic coupling caseHap = 0.0001 au) in which the V,(Q) =§w2Q2 (28)

perturbation theory works. The present reults (filled circles)
agree well with those of BixonJortner perturbation theory 1, )
(solid linep* over the whole temperature range, whereas the Vo(Q) = 501(Q — Qp)° + AG (29)
Marcus formula (dashed line) works only at high temperatures
because the nuclear tunneling effect is not taken into account.yith

Figure 12 shows the rate against the coupling strength at
temperatureT = 500 K. The Bixon-Jortner (dash line) and . 1«/_
Marcus (dotted line) theories break down as the electronic QO_E 2
coupling strength increases. The MECP approximation within
the present formulation (solid line with open square) agrees well The numerical results in comparison with the full dimensional
with the present results without MECP (solid line with open calculations are shown in Figure 13. The effective one-
circle). This is, however, simply because the electronic coupling dimensional model based on the present formulation (dash line)

(30)
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Figure 14. (a) Trajectories and caustics (*) on the Hendteiles potential for the initial conditioro = —0.43 andy, = —0.39. Partial destruction

of regular caustics is seen. (b) Poincare surface corresponding to (a). (a) and (b) reprinted from ref 37. Copyright 2004 World Scientific Publishing
Co.

agrees well with the present full dimensional calculations (solid V. Inclusion of Tunneling Effect
line), indicating the acceptability of the effective one-dimen-

sional model, at least in the case of symmetric potentials. The
present results are also compared with the exact quantum

Needless to say, tunneling is the most well-known quantum
mechanical effect, and it is naturally desirable to take the effect

mechanical calculations in the one-dimensional ax into account by qsing classical traje(?tories. Gengrglly;peaking,
correlation function approa¢hand are found to be in good there are three kinds of problems: (i) energy splitting in a sym-
agreement with the latter (not shown here) metric double well pOtentia|, (") decay of metastable state

As demonstrated here, the incorporation of the ZN formulas through tunneling, and (iii) tunneling in reaction. .For the fir;t
can very much improve the applicability of the theories of two problems we have recently been successful in formulating

electron transfer. A similar improvement should be carried out @ Practically useful method applicable to realistic polyatomic
in the so-called inverted regime. It should also be noted that molecules’® This includes an efficient method to carry out the
the present adiabatic limit is different from the solvent controlled time-consuming accurate ab initio quantum chemical computa-
adiabatic limit where the rate saturates in the strong coupling tions of potential energy surfaces. The basic idea is the same
limit and the saturation value is determined by the dielectric as the instanton theof};>>but a very efficient method to find
relaxation time®® The present treatment should thus be extended the instanton trajectory has been devised. The method has been
S0 as to take into account the effects of solvent dynamics. Theseapplied to real polyatomic molecules and very good agreements
studies are now in progress. are obtained with the experimert&sThe detailed discussions
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Figure 15. (a) Trajectories and caustics (*) on the Hendteiles potential for the initial conditiom, = —0.43 andy, = —0.41. The classical
dynamics is chaotic. (b) Poincare surface corresponding to (a). Torus is totally destroyed. (a) and (b) reprinted with permission from refgsif. Copyri
2004 World Scientific Publishing Co.

are not given here, however, and the reader should refer to reftheir final differential equation to be solved is second-order and
53. Instead, the third problem mentioned above is discussedthe solutions may become unstable due to exponentially growing
here. and decaying terms.

Naturally, numerous works have been done by many authors Our approach is to propagaidp(t)/oq(t), which is a solution
to deal with tunneling in chemical reactions such as the classical of the Riccati-type nonlinear differential equation as described
S matrix theory2® various versions of transition state the&fy,  below. At caustics this quantity diverges so that an appropriate
and the anti-Newtonian mechanf®sHere we consider a transformation is required to detect caustics. IiNadEmensional
possible extension of the ZN-TSH method mentioned in section phase space, thd-dimensional Lagrange manifold is formed
Il or the semiclassical method in section Il. This means thatit by a continuous set of the trajectori¢g(t), p(t)}. In this
is desirable, first of all, to devise a method to efficiently detect manifold the matrix composed of
caustics along classical trajectories in real coordinate space,
because the caustics provide the position for a tunneling _
trajectory to emanate into a classically forbidden space. A= a_q]
Recently, an efficient method has been proposed to locate
caustics of classical trajectories on-thesflyOne such approach  satisfies the following Riccati-type differential equation along
has been proposed before to propagdaj¢)/aq(0), which is a the classical trajectory:
minor of the monodromy matri¥ % where q(t) is a time-
dependent generalized coordinate. We believe, however, that oA _ qu_ quA— AHpq— AprA (32)

i.j=1,2, ...N (31)

the present method is much more stable than theirs, because ot
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Figure 16. Family of reactive trajectories and caustics (x) on the ground adiabatic potential energy surface of the modReiHted with
permission from ref 37. Copyright 2004 World Scientific Publishing Co.

whereHgqq Hqp, €tc. are the matrixes of the second derivative initial conditions are Xo, yo) = (—0.43,-0.39) for Figure 14

of the classical Hamiltonian taken along the trajectory, Hgg, and (—0.43,—0.41) for Figure 15. Figure 14 (15) corresponds

= 39?H/0gaq, etc. At caustics the solution of this differential to a somewhat irregular (chaotic) case. In the regular case the

equation diverges caustics appear along the envelope of the family of trajectories
(see Figure 14a), whereas the caustics are distributed rather

DetA(teausticdl = @ (33) randomly with the tori totally destroyed as the system becomes

chaotic, as seen in Figure 15a. The Poincare surface section

Beyond this point further solution of the differential equation shows discontinuities and separatrices (Figure 15b). The present

is not possible; beisdes, it is not appropriate to detect the causticsnethod works well even in such chaotic cases. Figure 16 shows

accurately from the divergence. So it is necessary to make ansome reactive trajectories together with the caustics along them.

appropriate transformation to the matAx To clarify the basic ~ The potential energy surface used is the ground adiabatic state

idea, let us consider the one-dimensional case for the moment.obtained from the DIM model of CH The collision energy

At the turning pointp(q) = 0 andA diverges. By invertingA and the initial rovibrational states are 1.2 eV and<( 0, j =

to A = dg/dp, one eliminates the divergence and the propagation (), respectively. The initial condition for the matrixis obtained

of A proceeds smoothly through caustics with the zero detectedby using the energy and momentum conservation in the

as the caustics. This inversion transformation is equivalent to asymptotic region.

the canonical transformation:p,(q) — (=&, f). Equation 32 Unfortunately, there is no convincingly good theory yet how
does not change under this transformation. A useful approachy, n 5 tunneling trajectory from the caustics. An extension of

in the N-d|men3|ona|_case IS o invert on_Iy the dlver_gmg the ordinary WKB type solution into the classically forbidden
element(s) of th? matrix. SquOS? th? d|yerg|ng elemeiuis region was discussed by Takada and Nakafituwith use of

the transformationp, an) — (~Gn. Pv) is made. Once the oo one gimensional connection formulas in the vicinity of
propagation runs through the divergent region and the CaUStICSc:austics to connect the wave functions between classically

|rs \(;Iertecte(rjc,j t?i |n;/ersr§ntraéﬂsforrrnatlont:s:p;plltﬁdrm_lt_er)l(a(;tly rttk;]e allowed and forbidden regions. However, this cannot be practical
everse order 1o resume the propagation IUMther. The Tourth- ¢, o itigimensional systems higher than two dimensions,

order Adams-Bashforth-Moulton predictos-corrector scheme unfortunately. The anti-Newtonian mechanics, on the other hand,

is used to solve the differential equation and the procedure is has been considered by Takatsuka and co-woféebst the
confirmed to be quite stable, although some care should be tal(enformulation is not symmmetric with respect to the generalized

in choosing the time step not to miss closely occurring caustics. corrdinates and momenta, as it should be, unfortunately, and

The above method has been applied to the following two formally cannot be correct. Some simple trajectories such as
cases: (i) two-dimensional Henon-Heiles potential and (ii) three- afly ) pie tray . .
straight lines, however, have been used quite often in practical

dimensional chemical reaction in a model £&{stem forJ . .

(total angular momentun¥ 037 The Henor-Heiles potential comgzutat_lon_s, and_ they are ?‘Ct”’%‘”y fOl.md tq work r_elat|vely

used is as follows (in atomic units): well. Th|_s simple idea of stralgh_tllne tr_ajectorles starting fron_1
the caustics normal to the classical trajectory has been applied
to calculate the thermal rate constant in thgdyisten®® The

H :%(sz“‘ n,’) +%(X2+y2) + (@_%f) (34) results are shown in Figure 17. The results with tunneling

included agree well with the quantum mechanical transition state

The classical trajectory is generated from the turning po(@j theory calculations, although it is not shown here.

= 0, which corresponds to the initial conditidar® = 0. After As this example demonstrates, the important quantum me-

a short time propagation g%~ the propagation is continued chanical tunneling effect can also be simply incorporated into

with the matrixA. Figures 14 and 15 show the results. The the methods explained in sections Il and Ill. Especially, the ZN-
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Figure 17. Thermal reaction rate constant og.F8olid line: without tunneling Dotted line: with tunneling.

TSH method can incorporate the nonadiabatic transition and chemical reactions becomes possible, although a further gen-

the tunneling simply by running trajectories. eralization of the formulation is necessary so that we can treat
_ a general case that the potential surface crossing and the
VI. Concluding Remarks transition state are separated. Electron transfer is another

Nonadiabatic transitions due to potential energy surface IMmPortant subject, because it plays crucial roles in various

crossings are definitely playing crucial roles in various kinds chemical and biological systems. As a sort of first step, the

of chemical processes. They (i) are important to comprehend famous Marcus formula has been modified with use of the ZN

the mechanisms of chemical dynamics occurring in nature, (i) formulas and the new formula has been found to work well in

provide us guiding principles how to improve the efficiencies the whole range of electronic coupling strength. This has been
of the dynamics, (iii) present useful tools to control the reactions done for the so-called normal case in which the potential

by using external fields such as lasers, and (iv) play key roles surfaces have the nonadiabatic tunneling type crossings. A
to manifest and create new functions of molecules. TheZhu similar formulation in the inverted case and also the extension
Nakamura (ZN) theory presents a set of analytical formulas to of the formulation are necessary so as to include the effects of
describe the dynamics in the potential curve-crossing problemssolvent dynamics.

Z??] ca?] phlay hbasic. roles ind'ghe stgdiels menFionedk abm:le. The other subjects mentioned above such as the manifestation
t_olugb the t et%ry IS a g_neb- tl_rnen5|o|r_1a one, it V‘ior j ‘?_’e dand creation of molecular functions and the laser control of
mainly because theé nonadiabatic coupling 1S a vector defined o iq dynamics have not been discussed in this Feature

in multidimensional space. Article. These will be reviewed in near future elsewhere
In this Feature Article, the above subject (i) has been picked ’ '

up and the developments of new semiclassical methods with

the ZN formulas incorporated and their applications to various VII. Appendix: Zhu —Nakamura Fomluas

dynamic processes have been explained and discussed on the

basis of the recent activities done in the author’s research group. Here the final expressions of the ZhNakamura formulas

The semiclassical frozen Gaussian wave packet propagationthat can be directly applied to practical problems are summarized

method based on the HermaKluk type of formulation and for the two types of transitions: (1) Landadener type of

the generalized TSH (trajectory surface hopping) method can transition in which the two diabatic potentials have the same

now be applied to realistic large systems. The classically sign of slopes and (2) nonadiabatic tunneling type of transition

forbidden nonadiabatic transitions, which play significant roles in which the two diabatic potentials have opposite signs of

in many cases can be treated properly. Quantum mechanicakiopes. It should be noted that there are some typographical

tunneling effects can also be taken into account in these errors in the expressions given in refs 1 and 11. The necessary

treatments by detecting the caustics along the classical trajeccorrections are explained in ref 2. The whole set of correct

tories. Obviously, the frozen Gaussian wave packet propagationexpressions is provided here.

method is more accurate than the TSH method. The generalized

TSH method would be, however, quite useful and convenient i, . .

to obtain some averaged physical quantities and to qualitatively some emplrlc_:al_c_:orrectlpns tPlaltahave been introduced to cover

comprehend the mechanisms of large systems, if the very muchSOMe small limiting regimes:

detailed information is not required. 1. Landau—Zener Type of Transition. The two dimension-
The nonadiabatic transition state theory is formulated and the less basic parametesdandb? in terms of the diabatic potentials

direct evaluation of thermal rate constant of nonadiabatic are defined as

It should be noted that the formulas presented here contain
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&= h_2 F(Fl B FZ)

= 8Vx3 (A1)
and
F.— F
2 _ = 1 2
b"=(E—-E)) 2RV, (A.2)

with F = /|F,F,|, whereF; (j = 1, 2), Vx, andEx are the

slopes of diabataic potentials, the diabatic coupling, and the

Nakamura

wherep represents the nonadiabatic transition probability for
one passage of the crossing point. It should be noted that the
above expressions are quantum mechanioatgctas far as
the Stokes constant); is exact. Below, the semiclassical
expressions in the ZhtNakamura theory are given.

1.1. Case A: Ex> Ex. The Stokes constaritl;, which is
actually a function of the parameters is given as

1 .
U, = A/ B — Lexp(p)

(A.12)

energy at the potential crossing, respectively. These parametersvhere

can be re-expressed in terms of the adiabatic potenkalard
E, with E; > E;) as given below. This means that the

diabatization of adiabatic potentials are not necessary; besides
the transition probabilities can be estimated more accurately with

2 1.
) (A.13)
b*+ 0.4a> + 0.7,

-4
b? +

the use of these parameters expressed in terms of adiabatigng

potentials:
2
a?=vd*-1 h A3
m(T3 — TYEARy) — Ex(Ry)] “9
and
2 2 2E - [EZ(RO) + El(RO)]
TV T T e R - ERy A
where
d2 _ [Ez(T(l)) - El(T(l))][EZ(T(Z)) - El(Tg)] ( A 5)

[Ex(Ro) — Ex(Ro)I’

The positionR, corresponds to the minimum separation of the
two adiabatic potentials, and; and T are defined as (see
Figure Al)

Ey = [Ey(Ry) + Ex(R)I/2 = Ey(T}) = Ex(TY) (A.6)

In terms of the Stokes constddt the reduced scattering matrix
R can be gquantum mechanically exactly given by

_ [+ UU,) exp(-2i0) —U,

$=|, (1- Uy exp@o)| A7)
where
U1 - U;
== A.8
2 14U, (A8)

The overall nonadiabatic transition probability between the two
adiabatic states is given by

4(Imu,)? ,
P, = IS5 =(1TUl|2)2 =4p(1—p)sify (A.9)
with
y =argU,) (A.10)
and
. 1
P=T 0 T (A.11)

0 0 0
_ _ v, Yy vl _ A
Y=0+¢s=o0 + ps In(ﬂ) argl"(ln) 7
(A.14)

The parameters ando are defined below in section 1.3. The
nonadiabatic transition amplitude, which connects the wave
function just before and right after the transition at the avoided
crossing is given by

L _[Y1=Pexpdg —pexp(iog
* \Vpexpio) V1—pexpligy

1.2. Case B: E< Ex. The Stokes constatd; is given by

(A.15)

ReU, = cosb){ JB(ol7) exp) — g, sinz(o)%(;é))]
OlTr

(A.16)

and

ImU, = sin(a){ B(o/7) exp(@) — g,° sirf(o) x

co§(a)—eXp(_ 20)

1/2
Bol) + 2g, cog(o) — gz} (A.17)

The probabilityp is given by

p = [1 + B(o/7) exp(D) — g, sinf(0)] "+ (A.18)
where
g, = 1.8@)°**exp(-9) (A.19)
g, = % n(12+a) - = (A.20)
a
and
27X exp(—2X)
BX)=— (A.21)

XT?(X)

1.3. Definitions ob, d, andd,. These parameters introduced
above are defined here. The expressionscofind 6 are
dependent on the energy as described below. Becajiaad
0o, Which appear below, and the parameigrare common in
the all energy regions, these are defined first.
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( 5al/2 )
o, =0l1l+—=—10"° A.22
v a’?+0.8 22
- " «/_27'[ F¢ + iFSr
0 +i0o= fo [Ki(R) = K(R) dR === F2iF2
(A.23)

where

P = (O 702+ 7ot (Pt ) +
O =702+ 7+ (P — 1) (A.24)

F$ = F,[b*— (b* — b)) (A.25)
FE=F_(y,— 7)) (A.26)
y,=0.9Wd -1 (A.27)
and
_ 1/
7, =1V (A.28)
with
0.160
= - (A.29)
Vvi+b
, 0.45/d?
)/2 = 0.5 (A3O)
1+ 1.5 exp(2.2,/b,|°°)
and
b, = b® — 0.9553 (A.31)
Now, ¢ ando are given:
(a) WhenE = Ex(Ry),
o= fTTOKl(R) dR — frjOKZ(R) dR+0, (A32)
and
d=0, (A.33)
(b) WhenE < Ey(Ry),
0 =0, (A.34)

and
T T,
0= [o IK,;(RI dR+ [ *| Ko(R)| dR+ 3, (A.35)

(c) WhenEy(Ry) < E < Ex(Ro),

o= fTFjOKl(R) dR + o, (A.36)
and
6= fRzZKZ(R) dR+ 8, (A.37)

J. Phys. Chem. A, Vol. 110, No. 38, 20080943

2. Nonadiabatic Tunneling Type of Transition. The two
parameters? andb? in terms of diabatic potentials are the same
as egs A.1 and A.2. In terms of adiabatic potentials, however,
they are differently defined as

1—y9)h?
2= ( 7)

= A.38
m(R, — R)*(E, — E) (39
and
, 2E—(E,+E)
= —Eb “E (A.39)
where
- E, — E
V_E(Rb"'Rt)_E(Rb"‘Rt) (A.40)
2 2 N 2

The reduced scattering matrix in terms of the Stokes constant
U, is given quantum mechanically exactly as

_ 1 exp(iA;,) U, exp(iA;,)
=17 uluz(uz exp(iA;) exp(i,) (A-41)
where
Ul - UI
= - A.42
2 |Ul|2 . 1 ( )

It should be noted that the Stokes constants are naturally
different from those in the LandatZener type of transitior
andE; (R, andEy) represent the position and energy of the top
(bottom) of the lower (upper) adiabatic potential (see Figure
18). The suffixes 1 and 2 of th8 matrix designate not the
adiabatic potential, but the regions in coordinate space with
respect to the potential crossing. Namely, the off-diagonal
elementS;, represents the transmission through the crossing
region. When the adiabatic potentials are symmetric around the
crossing point an@ = R, is satisfied,y becoms unity and the
appropriate limit should be taken to define the paramater
which gives

oo W [ER ER
amE, —E)| R lrs, R

(A.43)

R=R,

The semiclassical expressions in the ZiNakamura theory are
given below for the Stokes constant and other important physical
guantities.
2.1. Case A: E= Ep,. The Stokes cosntad; is given by
U, =iv1—pexp(iy) (A.44)

where the nonadiabatic transition probabifitfor one-passage
of the crossing point and the phageare defined as

p= exp[— g( 2 ) (A.45)
Ak + V' — 0.72+ 0.622%
and
., _ .0 90 [0 O\
Y=o ¢S_O+ﬂ JTln(ﬂ) +argl“(|n) + 7 g,

(A.46)
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Potential Energy

Potential Energy

(2) (b)

Figure 18. Schematic adiabatic potentials and various parameters used in the ZN formulas for (a)-tZedeucase and (b) nonadiabatic
tunneling case.

with U, =ilV1+Wexpp) — IIW  (A56)
o= fTEKZ(R) drR (A4T) it
e — 140 w [ 12
5= JT 6+10V1_b_4 A.48 W= 2/3950CO %_%St_gT‘/l?: : dt
= 16ab =~ (A-48) a a® @012+ 12 + ¥
1+vV1-b (A'57)
and and
0.2x'? S, (8 &
= 928" 50 A.49 - iofd) — (@) + 2 -
%= e (A.49) ¢=o+argrU2+idl) ~ (%) + 5~ g, (A5)

The phases appearing in the definitionSfnatrix are given as ~ where

_ o (R 2./ 2
A1 =2 K,(R) dR — 20, A.50 1-b)v5+3b
1= 2[4 KR 0 (A-50) _ \)/_ [o.o57(1+ 17025 1 %] (A.59)
2
a
Agp=2 [ KR dR+ 2, (A.51)
(1+ b)V5 — 37 s 1
Ap=0 (A52) 5= = [0.057(1— b?)025 + 5] (A.60)
a
with
, o 0.348%7(a%7 + 0.35)(0.42+ b%)( 5 100 )0-25
Op= B—R Kl(Rt) + Kz(Rb) + [(Ky(R) — KZ(Rb)] ’ a®'+0.73 \ 100+ &’
2 3[Ky(R) + Ky(R)] (A.61)
(A.53) \/_
2 2
-3 o2
T, andT, are the turning points oBx(R) (see Figure 18). The 9 =——=——V1.23+b° (A.62)
nonadiabatic transition amplitude to connect the wave functions x/gz +3
between the right and the left sides of the crossing point is given
by an
V11— p exp@d)s) «/F_) exp(io-o) gS - 038(1+ b2)1.2_0'4b2/a2 (A63)
Ix={_ Jr » = » .54)
pexp(-iog) v1-—pexp(-igy The phases appearing in the definitionSfatrix are defined
The overall transmission probability from the left to the right
or vice versa is given by A =0— 20, (A.64)
. 4 cos(y) (A55) A,y =0+ 20, (A.65)

" 4 cod(y) + ol —
() +p/(1-p) Au=o (A.66)
2.2. Case B: E> E = E. The Stokes constani; is given
by and



Feature Article

0= 3R~ RIGRIL+E)  (A67)

The overall transmission probability takes the form

W
1+ W

2.3. Case C: E< E;. The Stokes constartd; is given by

2= (A.68)

exp@)
ReU, = sm(2o) ./B(acln) expo) + ——
b LV JBlogm)
(A.69)
and
_ (ReUy)’ 1
Im Uy = cos(2y) sif(20)  cod(20,)
75000 9‘ (A.70)
where
o.=0o(1— gg) (A.71)
ov1—b*
o= 1GZ|b| 6+ 10v1 2’ (A72)
1+V1-b"
5= fTT.l'1|K1(R)| drR (A.73)
and
0 = 0.32x 102 exp(-0) (A.74)

T andT'1 are the turning points oR;(R) (see Figure 18). The
phase appearing in the definition 8fmatrix are

Ay=Ap=A,=—20 (A.75)

In this energy region physically meaningful quantities are the
overall transmission and reflection probabilities. The transmis-
sion probability is given by
P,=

B(oJm) exp(—20)

| 0.5V ’
B(acln) exp(20)
1 +va

+ B(oJm) exp(—20)

(A.76)
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